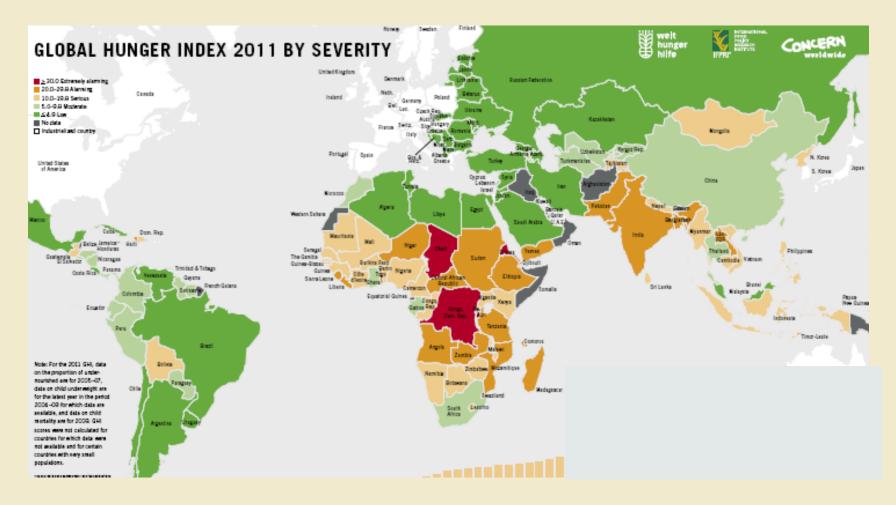
Modern plant breeding supported by high density genetic information


Eric Huttner

Outline

- Intro: plant breeding and the "Information Revolution".
- Manipulating gene one by one: one example
- Cost-effective high density genome profiles
- Their applications

Crop improvement matters!

Improved plant varieties

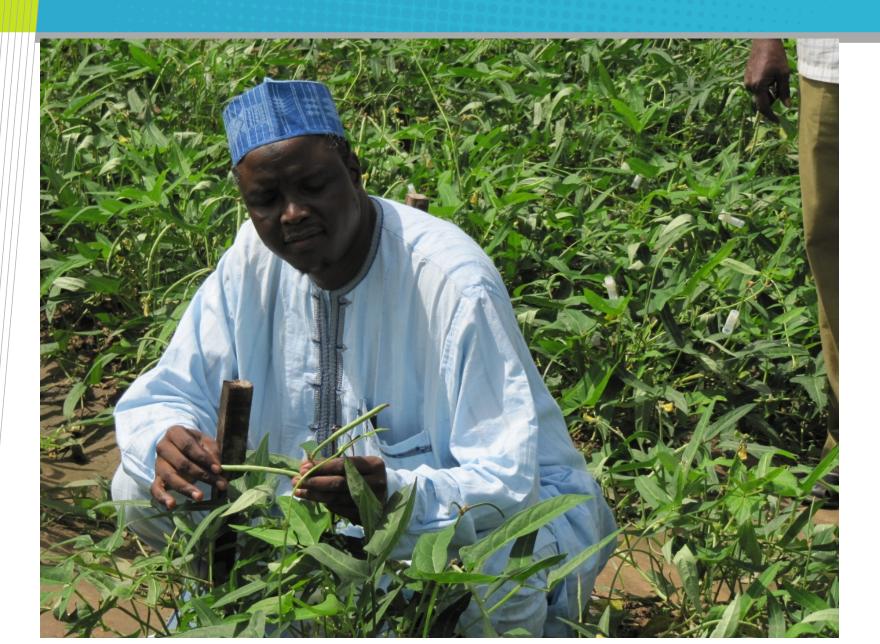
- Improved variety: combinations of genes delivering performance
 - For the farmer: yield, economic and environmental sustainability
 - For the consumer of the products quality, price, environmental sustainability
- Combining genes
 - "Classical" breeding
 - Genetic modification

This is "Science for Society"

Have you thanked a plant breeder this morning?

Bt Cowpea for Africa (TJ Higgins et al.)

Cowpeas are an important protein food for 200 million people in Sub-Saharan Africa.


- Maruca Podborer is the Major Target
- Use Gene Technology to Introduce Insect Resistance Genes
- Complement Traditional Cowpea Breeding Programmes in Africa

Nigerian cowpea breeder with Bt cowpea

Breeding

- Breeding is Integration: combining large number of genes
- Routine use of molecular genetic (DNA) markers
 - Germplasm diversity
 - Identify and track useful genomic regions
 - Small number of markers used in routine breeding
- Past limitations
- Can we do better?
 - For complex traits
 - For complex germplasm
 - For orphan or "small" crops

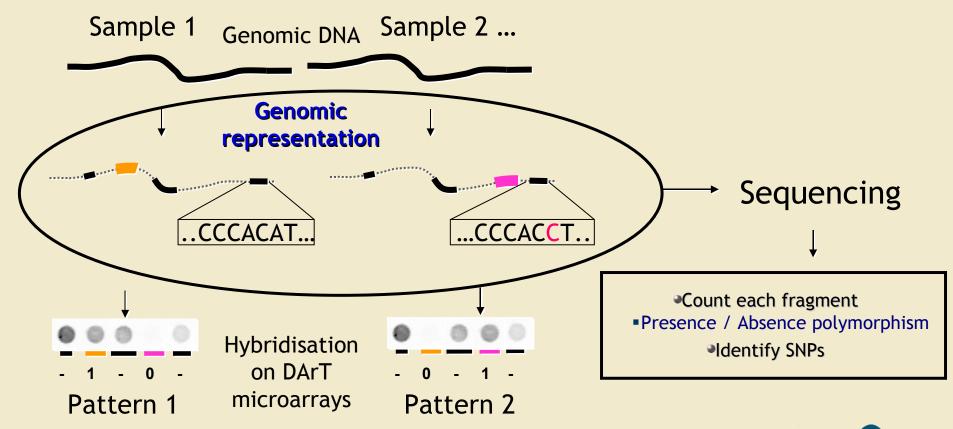
Breeding with molecular markers

Simple traits

- For example disease resistance one gene - large effect
- Marker = alternative to phenotyping
- Medium density molecular profiles: accelerate introgressions of small genomic regions

Complex traits

- Need to combine many genes
- Require high density molecular profiles
- Only recently practical and cost-effective
- Applications of these data require new IT tools


Diversity Arrays for high density molecular profiles

- Original method invented by Andrzej Kilian
- Complexity of the genome to be analysed is reduced to about 1%: Genomic Representation consisting mostly of low copy DNA
- Representation analysed:
 - Microarray platform
 - DNA sequencing platform

How it works

DArT Marker: genomic DNA fragment, the presence (quantity) or sequence of which is polymorphic in a Genomic Representation

DNA-to-data service: Microarray

- Report the score: 0 or 1, for each marker and each sample typed.
- High density arrays
 - 7K to 15K markers assayed
 - Genetic mapping, QTL mapping, association mapping
 - About 0.01\$ per marker assayed
- Low density arrays
 - 200-500 markers
 - Genetic ID, seed purity, Genomic Selection

DArT Plate for parallel analysis of 96 samples at medium multiplex (200-500)

Example of result: scoring table

				Extract Pla	te Barcode	19-8-	19-8-1	19-8-1	19-8-	19-8-	19-8-	19-8-	19-8-	19-8-	19-8-1
						Α	В	С	D	Е	F	G	Н	Α	В
															۲
MarkerName	GonelD	Chromosome	Œ.	Call Rate	PIC	LWn Y	LWT1	LW119	Lwvol	LWYIY	LWY09	LWrr	LWTEA	LWVJ	LW17
wPt-٦٣٢٩	77579	۱Α	٧٤.٣٣	۸۰.۸٥	٠.٥٠	١	١	١	٠	١	Х	١	Х	٠	١
wPt-٦٦૦٤	١١٦٨٦٠	۱Α	۸٧.٠١	90.75	٠.٥٠	•	•	١	٠	١	١	١	Х	Х	Х
wPt-Y^Y	110710	۱Α	۸٥.٣٠	91.59	٠.٥٠	Χ	٠	•	Χ	Х	١	•	•	١	•
wPt-9٣1٧	110911	۱Α	۸۳ <u>.</u> ۹۲	۸۸.۳۰	٠.٥٠	Х	Х	١	Χ	Х	١	١	Х	١	١
wPt-+£٣٢	117.05	۱Α	٧٨.٨٨	۸۸.۳۰	٠.٥٠	١	•	•	١	٠	١	١	١	Х	Х
wPt-٦٧٠٩	١١٦٨٦٣	۱Α	٧٨.٥٠	۸۰.۸٥	٠.٤٩	٠	•	Χ	Χ	Х	١	•	١	٠	•
wPt-+۱۲۸	117011	۱Α	٧٩ <u>.</u> ٢٧	۸۹.۳٦	٠.٤٩	١	Х	•	١	Х	١	•	•	٠	Х
wPt-۸۳٤٧	117.75	۱Α	۸۸.٦٣	۹٦.٨١	٠.٤٨	•	١	١	١	١	Χ	•	١	١	١
wPt-909Y	١٢٠٦٨٨	۱Α	۸٣.٠٩	۸۹.۳٦	٠.٤٨	٠	•	١	٠	•	١	Χ	١	Х	Х
wPt-۱۱٦٧	119100	۱Α	۸٦.٣١	97.00	٠.٤٨	١	٠	١	١	Х	Х	١	١	١	١
wPt-^+\٦	110577	۱۸	۸۸.۸۱	9 ٤ . ٦ ٨	٠.٤٦	١	١	١	١	Х	١	١	•	Х	١
wPt-٦٠٧٤	110597	۱۸	۸٧.٤٠	۹٦.٨١	٠.٤٥	١	١	١	•	١	١	•	١	١	١
wPt-Yary	117917	۱Α	۸٧.٨٢	90.75	٠.٤٤	١	١	•	٠	١	Х	٠	•	٠	Х
wPt-٦٣٥٨	117575	۱Α	٧٥.١٢	٨٩.٣٦	٠.٤٤	٠	Х	١	١	١	١	٠	١	١	١

DNA to data service: Genotyping By Sequencing

- Genomic Representation is sequenced
 - Millions of tags generated per sample
 - 100-1000 tags per sequenced fragment
- Presence Absence markers: report the score: 0 or
 1, for each marker and each sample typed.
- Single Nucleotide Polymorphisms, identified by comparing to a reference, reported separately

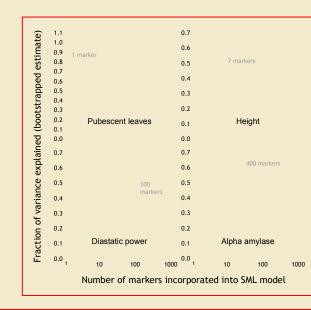
Markername	Sequence	SNP	Discordan	CallRate	PIC	One	Tags pmr	Het	SNP	Ref	Ex 1	Ex 2	Ex 3	Ex 4	Ex 5	Ex 6	Ex 7	Ex8	Ex 9	Ex 10	Ex 1	1 Ex 1	2 Ex 1	3 Ex 14
		4															_							
100000264 F] 0	TGCAGAACAA	Ref	0.016	98.93	0.426	0.692	1740	0.014	0.335	0.674	0	1	1	0	0	C	-	(1	0		0 () 1	0
100000264 F 0	TCCAGAACAA	45:T>C	0	99.47	0.437	0.323	884	0.014	0.335	0.674	1	C	0	1	_ 1	_ 1	_ 1	. 1	. 1	_ 1		1	() 1
100000309 F] 0	TCCAGTAATA	Ref	0	100.00	0.165	0.909	1589	0.000	0.081	0.919	1	1	1	1	1	1	1	1	1	1		1		1 1
100000309 F 0	TCCAGTAATA	48:G>A	0	100.00	0.165	0.091	120	0.000	0.081	0.919	0	C	0	0	0	C	0	(0	0		0 () (0 0
100000374 F 0	TGCAGATTAT	Ref	0	100.00	0.129	0.93	1945	0.005	0.077	0.928	1	1	1	1	0	1	1	(1	1		1		1 1
100000374 F 0	TGCAGATTAT	30:G>A	0	100.00	0.139	0.075	157	0.005	0.077	0.928	0	C	0	0	1	C	0	1	0	0		0	(0 0

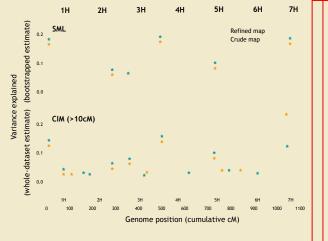
Services available for 72 crop plants and relatives

Aegilops	Coffee	Millet	Sorghum				
Agropyrum	Common bean	Miscanthus	Soybean				
Alfalfa	Cotton	Mung bean	Spinach				
Apple	Cucumber	Oat	Spruce				
Bambara groundnut	Dactylis	Oil palm	Strawberry				
Banana	Date Palm	Olive	Sugar beet				
Barley	Eucalyptus	Pear	Sugarcane				
Brassica	Fir	Pigeonpea	Sweet potato				
Cacao	Grape	Pine	Switchgrass				
Canarygrass	Groundnut	Pineapple	Taro				
Capsicum	Hemp	Plum	Tea				
Carrot	Нор	Рорру	Tobacco				
Cassava	Jatropha	Potato	Tomato				
Castor bean	Lolium	Pumpkin	Triticale				
Chickpea	Lupin	Quinoa	Tritordeum				
Citrus	Macadamia	Rice	Wheat				
Clover	Maize	Rubber tree	Willow				
Coconut	Medicago	Rye	Yam				

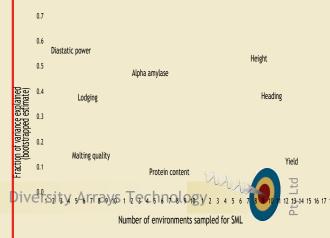
We can develop the technology for any other crops in a few weeks

Applications of DArT (1)


- Variety fingerprinting, diversity analysis
- Rapid creation of linkage maps for QTL analysis, etc.
 - Map as you go
- Accelerated introgression from exotic germplasm
 - Example of a GM trait to transfer to local varieties
- Single-step quantitative bulked segregant analysis.
- Any DArT marker can be converted to a single marker and applied on its own but:
 - Assay development required
 - Cost effectiveness?


Applications of DArT (2)

- "Whole-genome profile" applications
 - Comprehensive single-step characterisation of large collections germplasm.
 - Genetic background screening.
 - Identification of multiple regions responsible for complex traits ("adaptation complexes").
 - Mapping of genome rearrangements.
 - Marker-assisted selection for many traits simultaneously.
- Will this enable new breeding methodologies?
 - "Bolder" use of genetic diversity, increased use of exotic germplasm.
 - Data mining approaches to marker-trait association.
 - Genomic Selection


Statistical Machine Learning for data mining

- Method described by Bedo et al, BMC Genetics (2008) using biparental barley population for proof of concept
- Several algorithms, with and without structure component accounting
- Measures trait "complexity" in number of markers to create best model
- Applicable to any population type including breeding programs
- Used either for QTL/association mapping or for genomic selection (to account for contribution to trait at all positions)

The limitations of Marker Assisted Selection

- Genes associated with traits can be found
 - In biparental or multiparental populations
 - In association populations
- But: for many traits a large number of genes each contribute very little
- Yang et al. Nature Genetics 2010
 - human height (heritability 80%)
 - 50 best markers only explain 5% of additive variance
 - All markers explain 46% of additive variance

Genomic Selection (GS)

- First developed for animal breeding
- Phenotype and genotype a Training Population
- Use all marker data: estimate the effect of all markers
 - Many possible statistics can be applied
- Calculate a Breeding Value: the GEBV
 - Depends on the trait(s) selected
 - Yield, product quality, disease resistance, ...
- Validate the model on a Validation Population
- Apply by genotyping breeding populations
 - Use the GEBV (instead of the phenotype) to select the best individuals

Features of GS

- Unbiased use of all marker data
- No need to discover QTLs
- Breeders can use markers without understanding the underlying biology
- GS is practical because whole genome molecular profiles are now available at an acceptable cost
- Models show increased breeding efficiency compared to phenotypic and Marker Assisted Selection
- Practical considerations
 - Linkage Disequilibrium required
 - Breeding systems, population structure
 - Population size
 - Marker density
- Does it work for plant breeding?

GS example: Eucalyptus Resende et al. 2012, New Phytologist, 194, 116-128

- 2 breeding populations: 11 and51 parents
- 4 traits, 700-900 individual genotyped
- 3000-3500 polymorphic DArT markers used
- Correlation of predicted and observed Breeding Values about 0.7
- Use of GEBV
 - Early selection before phenotypes can be measured
 - Reduce breeding cycle

Contact author: Dario Grattapaglia dario@cenargen.embrapa.br

GS example: Wheat historical lines at CIMMYT Crossa et al, 2010, Genetics, 186, 713-724

- 599 lines, 4 environments, 1279 DArT markers
- One trait: Grain yield
- Tried several methods to estimate marker effects
- Correlation of predicted and observed yield: between
 0.4 and 0.6 depending on environments and methods

Contact author: Jose Crossa j.crossa@cgiar.org

Wheat bi-parental populations (Cornell University) Heffner et al. 2011, Crop Science, 51, 2597-2606.

- Two biparental populations: high LD
- Nine grain quality traits, high heritability but difficult phenotyping
- Marker density of 300-500
- Population size: 24 to 256
- Multiple environments
- Accuracy of 0.5 achieved for population size of 96

Contact author: Mark Sorrells mes12@cornell.edu

GS Review and Conclusion

- Recent review (Cornell University): Lorenz et al. (2011) Advances in Agronomy 110:77-122
 - Contact author: JL. Jannink jeanluc.jannink@ars.usda.gov
- Data now showing that GS can be used in plant breeding in a range of contexts.

Wheat stem rust (image USDA)

Conclusion

- Application of GM technology can serve society
 - Safety issues addressed
 - How Europe is slowing Africa's progress
- New breeding methods are becoming possible
 - In the lab: new technologies, instruments
 - In silico: computer power, new algorithms
- Information becomes knowledge
- Knowledge becomes new products

Remember to hug a plant breeder tomorrow!

Current DArT team

Andrzej Kilian

IT: Grzegorz Uszynski

Frank Detering

Puthick Hok

Matthew Sellers

Michael Kirk

Zahidul Islam

Laboratory:

Vanessa Caig

Jason Carling

Colleen Hopper

Gosia Kilian

Damian Jaccoud

Adriane Machado

Kasia Heller-Uszynska

Cina Vipin

Hui Ming Yang

Ling Xia

Acknowledgements

Current DArT team

Former students & employees

Mona Akbari

Ilaria Catizone

Cyril Cayla

Mark Jones

Pavan Krishna

Sujin Patarapuwadol

Kaiman Peng

Brent Thomson

Peter Wenzl

Shi Ying Yang

NICTA Collaborators

Justin Bedo Adam Kowalczyk

Visitors to DArT:

Hania Bolibok

Aurélie Bonin

Sophie Bouchet

Arianna Bruzzone

Yong-gu Cho

Andrew Craig

Isabel De La Casa

Evelyn Hackl

Fshwar Kankanti

Marianne Konrad-Koeszler Anna Seroczynska

David Kudrna

Li Rongbai

Ali Mehrabi

Chandrika Perera

Ange Marie Risterucci

Senthilvel Senapathy

Mike Stevens

Antoinette van Schalkwyk

Alexander Wittenberg

Prapit Wongtiem

Zong Xuxiao

Dione Mendes

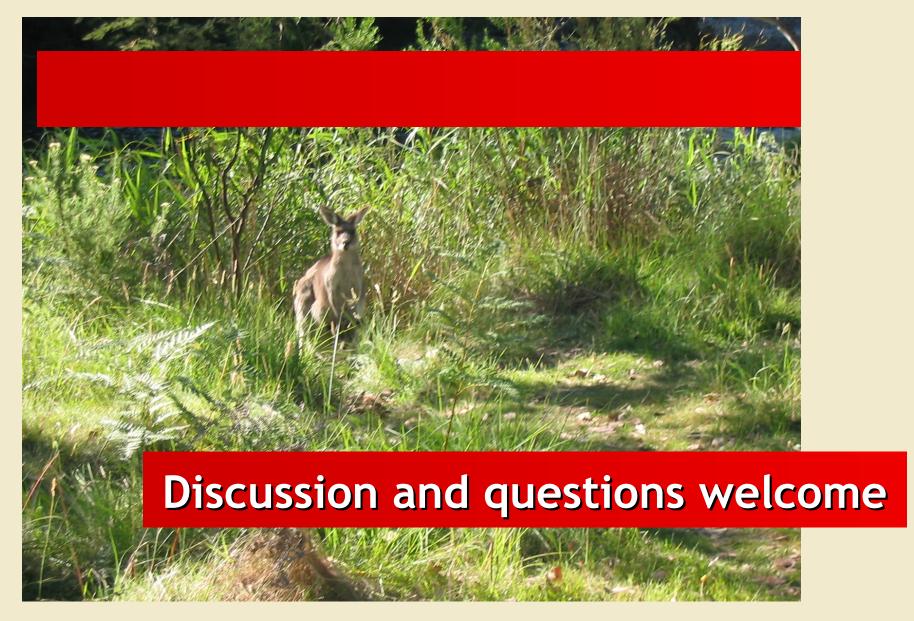
Samanta Marengo

Darius Grzebelus

Boris Brinez

Vu Thi Thuy Hang

Cesar Petroli


Cina Zachariah

Feng Yan Li

Carolina Sansaloni

Gui Yi Jie

Diversity Arrays Technology

