Using genomics to identify virulence factors and new vaccine targets for group A Streptococcus

Jason Cole Ph.D. University of California San Diego University of Queensland

BioVision Alexandria Egypt 8 April 2014

Group A Streptococcus (GAS)

- > Gram-positive β -hemolytic bacterium found in the throat and skin
- An important exclusively human pathogen
- Mild infections to life-threatening invasive illnesses

gizmag.com

academic.pgcc.edu

Group A Streptococcus (GAS)

- Gram-positive pathogen causing 700 million infections annually
 - Pharyngitis (strep sore throat)
 - Impetigo
 - Cellulitis

Group A Streptococcus (GAS)

- Causes 650,000 invasive infections with 25% mortality
 - Bacteremia
 - Toxic shock syndrome
 - Necrotizing fasciitis (flesh-eating disease)

Necrotizing fasciitis

diseaseworld.com

sfghed.ucsf.edu

GAS Causes Rheumatic Heart Disease

- Repeated infections may trigger rheumatic heart disease
 - 15.6–19.6 million cases worldwide
 233,000 deaths annually

Prof. Bart Currie MSHR

RHD patient heart valve shows thickening & calcification

Rheumatic heart disease (RHD)

GAS Mortality Worldwide

~700 million human infections annually, resulting in >500,000 deaths

Infection-related deaths globally

Carapetis et al. Lancet Infect Dis (2005)

Prevention of GAS Diseases

- Prophylactic GAS treatment requires injections of penicillin
- This strategy has limited success due to unavailability of treatment or low levels of patient compliance
- Concerns exist over GAS developing resistance to penicillin

synapticspeculations.com

No GAS Vaccine Available

				0								
Characteristics/Deficiencies	M protein	C5a peptidase	FbaA	FBP54	СНО	Sfbl	R28	SOF	SpeB	Sib35	Spa	Sse
Highly conserved across serotypes	-	+	-	+	+	-	ND	-	+	ND	ND	-
Ubiquitous expression	+	+	-	-	+	-	ND	-	-	ND	ND	ND
Possible toxicity and/or proteolytic activity	-	+	-	-	-	-	-	+	+	-	-	+
Systemic protection	+	ND	+	+	+	ND	+	+	+	+	+	ND
Intranasal protection	+	+	ND	ND	+	+	ND	-	ND	ND	ND	ND
Subcutaneous protection	+	ND	ND	ND	ND	-	ND	ND	ND	ND	ND	+
Opsonic/Bactericidal antibodies	+	ND	+	+	ND	ND	ND	+	ND	+	+	-
Auto-immune reactivity	+	ND	ND	ND	+	-	ND	ND	ND	ND	ND	ND

Existing GAS Vaccine Candidates

Identification of New Vaccine Antigens

The aim is to map the GAS cell surface proteome to identify novel antigens that prevent infection and do not induce auto immunity

textbookofbacteriology.net

Criteria for Vaccine Candidate Selection

SD UCSD

- No human homologue
- Homologues published as cell surface-associated and/or protective in other streptococcal species
- Previously characterized as GAS virulence determinants

business2community.com

Mutanolysin extract of cell wall proteins from GAS isolate 5448

Cole et al. Infect Immun (2005)

- Started with ~20 candidates
- Tested candidates for
 - Conservation
 - Surface localization
 - Protection in mice

➤ Two "hits"

- Arginine deiminase (ADI)
- Trigger factor (TF)

Cole et al. Infect Immun (2005)

- Arginine deiminase (ADI)
 Arginine degradation
- Trigger factor (TF)
 Chaperone activity
- ADI and TF are anchorless no signal sequence and no cell wall anchor motif

Cole et al. Infect Immun (2005)

Conservation of Surface Proteins: BlastP

GAS strain	Serotype	Amino acid identity (%)					
		ADI	TF				
M1	emm1	99	99				
M49 591	emm49	99	100				
MGAS10394	emm6	99	100				
MGAS315	emm3	100	100				
MGAS8232	emm18	99	99				
SSI-1	emm3	100	100				
MGAS10270	emm2	99	99				
MGAS10750	emm4	99	99				
MGAS2096	emm12	99	99				
MGAS5005	emm1	99	99				
MGAS6180	emm28	99	99				
Manfredo	emm5	99	99				
NZ131	<i>emm</i> 49	99	99				
MGAS9429	emm12	99	99				

Expression of Surface Proteins

ADI and TF are expressed in multiple GAS strains

Henningham et al. J Mol Med (2012)

Visualization on the GAS Cell Surface

Henningham et al. J Mol Med (2012)

Immunization & Challenge

- Can the highly conserved surface proteins protect mice against lethal systemic challenge?
- Female BALB/c mice 4-6 weeks

Protection Following Lethal IP Challenge

Dose: 2 x 10⁷ cfu/mL pM1 (*emm*1)

Henningham *et al.* J Mol Med (2012)

Reactivity of Proteins with Human Serum

Pooled serum from patients with rheumatic fever and rheumatic heart disease has reduced reactivity to ADI and TF

Henningham et al. J Mol Med (2012)

Conclusion & Future Directions

- ADI and TF protect mice against systemic GAS infection
- Enhance safety of ADI and TF via abrogation of enzyme activity
 - ADI mutant proteins D166A and D277A retained structure, recognition by antisera and immunogenic epitopes, making them ideal for inclusion in GAS vaccine preparations

Henningham et al. mBio (2013)

Group A Carbohydrate (GAC)

Polymer of rhamnose and N-acetylglucosamine (GlcNAc)

GAS cell wall structure

textbookofbacteriology.net

Group A Carbohydrate (GAC)

- Polymer of rhamnose and N-acetylglucosamine (GlcNAc)
 - ➢ 50% of the cell wall
 - Covalently linked to cell wall
 - Highly conserved among GAS

Group A carbohydrate structure

Fung et al. Infect Immun (1982)

Group A Carbohydrate (GAC)

Rapid test kits based on latex agglutination

Agglutinating antibodies recognize the GlcNAc side chain

Antibodies against the GIcNAc side chain may trigger RHD, hampering vaccine development

Identification of GAC Biosynthesis Genes

Putative 12-gene GAC biosynthesis locus (gacA-L)

a	gacA	gacB	gacC	gacD	gacE	gacF	gacG		gacH	gacl	gacJ	gacK	gacL	
GAS	0602	0603	0604	0605	0606	0607	0608		0609	0610	0611	0612	0613	> (M1 5005 Genome)
gacA	dTDP-4-dehyd	rorhamno	ose reduct	ase		gacF	Glycosyltransfera	ase			gac	K Hetero	polysaccharid	e repeat unit export protein
gacB	α-D-GlcNAc α-	1,2-L-rha	mnosyltra	nsferase		gacG	α -L-Rha α -1,2(or	'α -1	l,3)-L-rhamnosyltrans	sferase	gac	L Memb	rane protein	
gacC	α-L-Rha α-1,3-	L-rhamno	osyltransfe	erase		gacH	Phosphoglycerol	l tra	ansferase			Esser	ntial gene (poly	rhamnose core?)
gacD	ABC-transport	ter (perme	ease prote	in)		gacl	Glycosyltransfera	ase				Mutar	nt lacks GlcNAd	c side chain
gacE	ABC-transport	er (ATP-b	inding pro	otein)		gacJ	Membrane protei	n				Mutan	it viable with in	tact GlcNAc side chain

> gacl, gacJ and gacK mutants lack GlcNAc side chain

Gacl is essential for the GlcNAc side chain of GAC

Glycoanalysis of Δgacl GAC

GIcNAc Enhances Innate Immune Resistance

GlcNAc side chain promotes blood growth & neutrophil resistance

GIcNAc Enhances Virulence

GlcNAc side chain promotes survival in a mouse infection model

Anti-ΔGAC Antibodies Promote GAS Killing

Anti-ΔGAC antibodies promote blood and neutrophil clearance

Anti-ΔGAC Antibodies Protect Mice

- \succ Passive immunization with anti- Δ GAC antibodies protects mice
- Absence of GlcNAc may alleviate potential RHD safety concerns

Conclusions

- ➢ GAC is encoded by a conserved 12-gene locus (gacA-L)
- Gacl is essential for the GlcNAc side chain of GAC
- > The GlcNAc side chain is a virulence factor
- GlcNAc-deficient GAC warrants further investigation as a vaccine

Future Work

- Complete non-human primate efficacy and safety testing prior to human clinical trials
- > Immunize macaque monkeys with cocktail of ADI + Δ GAC
 - Monitor immune response
 - Investigate antiserum cross-reactivity with human heart tissue
 - Pharyngeal challenge with GAS

www.noveprimgroup.com

Acknowledgements

BioVisionAlexandria

New Life Sciences: The Next

7-9 April 2014

Decade

UCSD Nizet Lab Anna Henningham Nina van Sorge Kirsten Kuipers Victor Nizet

UCSD Glycocore Biswa Choudhury

UCSD Systems Biology Research Ramy Aziz

University of Minnesota Patrick Schlievert

Boston Children's Hospital Richard Malley

BioVision 2014

Funding

