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A primer on orbit integration

Consider integrating an orbit in the Kepler potential V(r) = -1/r.

Equations of motion read
r

r=v \% (r) 3

Examine three integration methods with timestep A:

v =r 4+ hv : v =v + hF(r) Euler's method
r' =r+ hv ; v =v+hF(@’)  Modified Euler method
(r',v') = RKA4(r,v;h) Runge-Kutta method

One-step error is O(h?) for Euler methods and O(h®) for Runge-
Kutta

100 force evaluations per orbit for each method
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A primer on orbit integration

Modified Euler method comes in two flavors:
' =r+hv ; Vv =v+haF@G) “drift-kick”
v = v + hF(r) : r' =14+ hv/ "kick-drift"

An even better method is o combine half a drift-kick step and
half a kick-drift step:

1
I'l/2 = T —I— EhV,
V/ = VvV —I— I’LF(I']_/Q),

/

1
— “hv'
r I']_/2—|—2V

This is the leapfrog or Verlet method.



spotaad [ejiqdo jo Jaquinu

001 01 I

dgajdea]

E_:ﬂ paljipouu

| _i_j

|
i

il

b=

|
P

fATTTT T F|||||| Fﬂ||||| F|IIII

m.._l._le_wm:zm =

a9y S

=

TR

a-01

4-01

a-01

c-01

1000°0

100°0

(1/4v)5o1

10°0

10



Modified Euler method and leapfrog give phase errors A¢ < t,
whereas high-order methods like Runge-Kutta give A¢ o t2.

Why do modified Euler and leapfrog work so well? Because they:

- preserve volume in phase space, just like Newton's laws (Liouville's
theorem):

3(1./,\,/ —_ 1 P"We!
o(r,v)

* this is the prototype of a geometric integration algorithm - one
that explicitly preserves the geometric properties of the flow of
trajectories in phase space

- modified Euler and leapfrog have the additional geometric
property that they generate a symplectic or canonical
transformation

- leapfrog has the additional geometric property that it is time-
reversible

- leapfrog also has one-step error O(h3), one order higher than
modified Euler



Symplectic integration algorithms

Many dynamical systems are described by a Hamiltonian H(q,p).
Trajectories follow the equations of motion

s |
~ Op —0q

Let z=(q,p) and let z(1) be the trajectory governed by the
Hamiltonian. Let z — Z=L.(z) be the map defined by this
trajectory over some interval t. This map is a canonical or
symplectic transformation, i.e. it satisfies

MIMT =17,
where
0z o -I
Mij_azj’ J_[I 0

Symplecticity provides a strong constraint on the geometry of
trajectories in phase space. Since the real map is symplectic,
the map defined by the numerical integration algorithm should
be symplectic as well.



Reversible integration algorithms

Many dynamical systems are reversible: if T is the time-reversal
operator (e.g. for Cartesian coordinates T(q,p)=(q,-p)) then

L,TL; =T

(Compare to the symplectic condition MITMT=T).

If the dynamical system is reversible, the map defined by the
humerical integration algorithm should be reversible as well.

For long integrations, preserving the gualitative geometrical
features of the real dynamical system is more important
than minimizing the one-step error.



How do we construct a symplectic integrator?

The system we are examining is described by the Hamiltonian

H(q,p) = 3p° + V(q)

and the equations of motion

- OH __ . __ __O0H _
Q=3p, =P P——m——VV

Any Hamiltonian generates a symplectic transformation. So
replace H(q,p) by a new Hamiltonian

H'(q,p) = 5p” + V()8 (1)

where

5p(t) = hZé(t — jh)
J



How do we construct a symplectic integrator?

H'(q,p) = 5p° + V()5 (0)

where

Sp(t) =h)_ o(t—jh)
J
Integrating this from =0+ to t=h+ gives
d=q+hp , P =p-hVV(d)

which is the modified Euler method. Thus modified Euler
method is symplectic. Leapfrog is simply

H(q,p) = 5p° + V(q)3,(t — 3h)



Can we construct higher-order symplectic integrators?

Let z=(q,p) and let z(t) be the trajectory governed by the
Hamiltonian. Let z — Z=L.(z) be the map defined by this
trajectory over some interval t. Define “drift" and “kick"
operators

Dy :q—d =q+hp, K : p—p =p—-hVV(d)

Then modified Euler method replaces L, (z) by K,D,(z) or D,K,(z)
(first-order integrator) Leapfrog replaces L,(z) by D, ,K, D, .(z)
(second-order integrator). To make a fourth-order integrator
use

D.K,DuK.D K,D,
where a = 1.35120h, b = -0.3512h, c= -1.7024h (Forest's method)
automatically symplectic since D,, K, are symplectic
any symmetric formula is fime-reversible
only one set of phase-space coordinates has to be stored

can be generalized to arbitrarily high order



Geometric integrators with variable timestep

If the timestep h is allowed to vary as a function of (q,p) then
the integrator is no longer symplectic — energy drift

1. Transform the time variable

Introduce a fictitious time s through dt=g(q,p)ds, and a new
coordinate and momentum q,=t, p,=-E. Then equations of
motion are given by the new Hamiltonian

6(q0.9.Po.P)=9(q.p)[H(q.p)*+po]
which can be integrated with a fixed fimestep in s.



Geometric integrators with variable timestep

2. Use time-symmetrized leapfrog
1
p— —h
di/2 q -+ >1tP

1
P12 = P—5hVViay2)
h+h = 2g(d;/2,P1/2)

1

P’ = P12 —Ehlvv(mp)
1

d = daip+Sh'p

this is not symplectic but it is time-reversible, and that is enough
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Orbit integration in planetary systems

To follow motion in the potential V(r) we have used the Hamiltonian

H'(q,p) = 3p° + V(¢)8,,(t — 3h)

Motion of a test particle in a planetary system is described by the

Hamiltonian
1, GM,

H(I‘,p) — 5]9 T

|r—rj|

— HKepler + H planets

To carry out numerical integration we replace this with

H(r,p) = HKepler + leanet35h(t + %h)



A primer on orbit integration

The workhorse for long orbit integrations is the mixed-variable
symplectic integrator (Wisdom & Holman 1991)

H(r,p) = HKepler + leanet35h(t + %h)

- a geometric integrator (symplectic and time-reversible)
* errors smaller than leapfrog by of order m,../M.~ 10

» all of the work is in converting back and forth from action-angle
variables to Cartesian coordinates once per step

* numerical analysis — dynamical perturbation theory

* long-term errors reduced to O(m,,,.+/M-)? by techniques such as
warmup or symplectic correctors



Maximum error in M

0.01 =

=
]
|

0.0001

Timesteps range from 7
days (Mercury) to 5 years
(Pluto)

Saha & Tremaine (1994)



A primer on roundoff error

Famous examples of problems due to roundoff error:

new Vancouver stock exchange index was initialized in 1982
at 1000.0. After 22 months the index stood at 524.881
despite a rising market

in 1991 Gulf War, Patriot missile defense system converted
clock steps of 0.1 sec to decimal by multiplying by a 22-bit
binary number; after 100 hours the accumulated roundoff
error was 0.3 sec, which led to failure to intercept a Scud
missile, resulting in 28 deaths



A primer on roundoff error

Floating-point numbers are stored in the computer as p bits
plus an exponent. Typically p=53, corresponding to accuracy
g=2P=10-16

Simplest model is that energy error grows like a random walk.
After N integration steps the fractional error is A E/E~ ¢
N2~ t1/2 Phase error is then A¢ ~ (t/P,..;;) A E/E ~ 1372
("good"” roundoff)

Many numerical integrations exhibit A9 ~ 12 ("bad" roundoff")

Over lifetime of solar system, Ao ~ 1 for good roundoff and ~
10° radians for bad roundoff



A primer on roundoff error

A representable number is a real number that can be stored
exactly in the computer, e.g. all integers, (integer)/2"; but not © or

1/3.

Floating-point arithmetic is optimal if evaluation of any floating-
point operation yields the representable number closest to the
true result.

Optimal floating-point arithmetic is unbiased if in the case of a tie
the method is equally likely o choose the larger or smaller
adjacent representable number (e.g. round to even).

Dekker-Kahan Theorem: If floating-point arithmetic is optimal,
double-precision arithmetic can be used to generate quadruple-
precision results.



A primer on roundoff error

Most important step in managing roundoff is to ensure “"good"
roundoff behavior rather than "bad" behavior:

» use machines with optimal and unbiased arithmetic, e.g., IEEE
754 standard (o check it out, use "paranoia” programs at

)

- carry out selected operations in quadruple precision

* beware of any mathematical constants that are not
representable (n, 1/3, etc.)



Summary

When integrating ordinary differential equations

- short-term guantitative accuracy is not the same as---and is
often less important than---long-term gualitative accuracy

- use geometric integrators, which preserve the qualitative
features of the physical systems they are describing
(symplecticity, time-reversibility, etc.)

- if the physical system is close to one that can be integrated
exactly, choose the integration algorithm so that it is exact for
the integrable system

* manage roundoff error carefully



