
A Framework for the Encoding of Multilayered Documents

Youssef Eldakar † Noha Adly †* Magdy Nagi †*
† Bibliotheca Alexandrina

El Shatby 21526
Alexandria, Egypt

* Computer and Systems
Engineering Department

Alexandria University
Alexandria, Egypt

{youssef.eldakar,noha.adly,magdy.nagi}@bibalex.org

Abstract

Electronic publishing of material digitized using
imaging and OCR calls for a special delivery format
capable of reconstructing original documents in a
well-usable electronic form. We present a framework
for the universal encoding of multilingual image-on-
text documents, enabling retrieval systems to text-
search and highlight hits on original page images. A
generalized format for representation of image-on-text
allows for integration of different OCR engines and
target format encoders. This framework’s current
implementation encodes multilingual content into
DjVu and PDF. Performance has been evaluated with
focus on file size and shown that overhead of adding
text layers is small compared to advantages and that
output is comparable to other systems.

1. Introduction

Recent years have been witnessing a growth in the
digital publishing of documents. Although currently
most documents are born digital, it is necessary to
account for converting the massive heritage of paper-
based documents into digital versions. Today's imaging
and OCR technology is making it possible to digitize
material at a fast pace. The presentation of such
digitized material should provide at least the
functionality of originals, and, where appropriate,
provide improvements. Ideally, users should be able to
access, display, search, and navigate through digitized
documents as effectively as possible using familiar
interfaces. Digitized content contains three levels of
information: image, text, and structure. The challenge
in publishing of digitized material, therefore, becomes
in presenting this full reconstructed information in the

most usable format, and, therefore, the following must
be addressed:
• Preserving the layout: the layout of the original

document must be preserved, including formatting,
structure, figures, and tables, such that an exact
copy of the original is presented.

• Possibility to search: searching in the text of the
published document and locating the exact place
where the search terms occur must be possible.

• Efficient image compression: because improved
distributability is an important advantage, efficient
image compression is necessary to make feasible
the transfer of digitized work across networks. Yet,
image quality must not be unacceptably
compromised.

• Multilingual text support: since our goal is to
digitize whatever is possible of the written works
of humanity, supporting all human languages is a
necessity. The key to this is to implement a robust
international standard character set such as
Unicode [1].

• Multipaging: since a book consists of many pages
that are bound together, to be able to publish
digital books that are convenient to distribute and
browse, the publishing format has to accommodate
multiple pages in a single file, and the viewing
software has to provide convenient means for
browsing multipage documents.

2. Related work

In publishing digitized documents, there exists four
different approaches. The simplest of these approaches
is to publish the material as scanned page images as in
the Gallica digital library of the BNF (gallica.bnf.fr),
and the Gutenberg Bible and the Shakespeare in Quarto
of the British Library (prodigi.bl.uk). This approach

has the advantage of preserving the exact original look
of digitized items but provides no means for a
computer to search, copy, or otherwise process textual
information. Although several research efforts were
done for Document Image Retrieval in the fields of IR
and CBIR [17], the retrieval is limited to document
image features only, such as layout similarity or word
matching [14]. Other efforts focused on the recognition
and extraction of metadata, such as the title, author and
citations, especially for scientific publications such as
[7] [11].

To compensate for this deficiency, the second
approach involves publishing the actual text obtained
either through manual data entry or OCR techniques.
Manual data entry – which is an approach adopted by
endeavors such as Project Gutenberg (Gutenberg.org) –
bears the drawback of losing all original layout and
being slow and expensive, although it ensures high text
accuracy. In contrast, numerous projects resort to
publishing OCR output for being a quicker alternative.
Although OCR suites extract the layout, they do not
support a standardized output format that different
viewers can understand. In an attempt to preserve the
layout in a standardized format, Ishitani [10] proposed
a method for transforming OCR output to an XML
document while reconstructing the layout according to
specified DTDs. Another proposal [19] converted OCR
output to an SGML/XML representation, namely,
Structured Document Format (SDF) based on the
hierarchical document format of DAFS [5]. Similar
efforts were done using SGML [6] [12] [18]. It should
be noted, though, that the variety of document types
that could be processed through these methods are
limited to the ones with specified DTDs. Further, the
quality of the published documents is also dependent
on the level of accuracy achieved by the OCR as the
user is exposed to reading the text with the errors
produced by the OCR.

Although OCR errors might not cause problems in
tasks such as text categorization, they will have a
negative effect if the text is read by humans. Therefore,
a third approach attempts to bring together the
advantages of the first and second approaches by
pairing up the image with the text. For instance, in [9]
[13], OCR output is represented in HTML, where
recognition results are used for words recognized with
high confidence; otherwise, original word images are
substituted. A different method for pairing text and
images, which is used in UDL (ulib.org) and the
Making of America digital library (MOA)
(cdl.library.cornell.edu/moa), is to provide an interface
that allows the reader to easily switch between a page's
image and its OCR plain text. Although the third

approach is more comprehensive than any of the
former two considered by itself, it still treats the page
image and the text as two separate items while they are
merely different representations of one thing.

The fourth approach aims at benefiting from both
representations of the information by laying the image
over its associated OCR text in a multilayered
document. The page image is positioned as the first
layer on the Z-axis, which is the visible part. The text
tokens are positioned according to layout by specifying
bounding box information in a hidden layer behind the
image. A person viewing such document never sees the
actual text but instead sees the original page image
independent of how well OCR worked. Yet, retrieval
systems can still search, highlight, and copy-and-paste
the hidden text to the level of accuracy achieved by the
OCR, as shown in Figure 1.

Figure 1. Arabic image-on-text with
highlighting

This multilayered format is not a new concept.
Adopted by Adobe Acrobat in the PDF format [15],
image-on-text has proven extremely useful, as it
preserves exact layout while allowing access to text.
Image-on-text has been used by different digital
libraries, such as those of IEEE and ACM, but only
with Latin languages. Recent large-scale digitization
projects – such as Google Print (books.google.com)
and the Open Content Alliance (openlibrary.org) have
also used image-on-text with Latin languages. For non-
Latin languages, image-on-text technology is often not
readily available. Ding et al. in [3] produced Chinese
image-on-text documents through an application
embedded in TH-OCR, extended the availability of
image-on-text to three Asian languages. Yet, this
solution is limited within TH-OCR and cannot be
extended and reused. Image-on-text-aware viewers are
needed to manipulate this specific type of documents.

The Multivalent project [16], sponsored by the NSF
Digital Libraries Initiative, offers a browser that brings
about an alternative approach to browsing of digital
documents that works well for image-on-text.

We present in this paper a framework for encoding
multilingual digital books into image-on-text. We
present a system supporting Arabic and Latin and
applicable to any OCR engine and thus extensible to
any language. The system currently supports two
publishing formats, namely, DjVu and PDF, preserving
the layout, and multipaging. The size of the published
documents is comparable to the ones generated through
other systems, and the overhead incurred by the hidden
text layer is reasonable.

The paper is organized as follows. Section 3
introduces the Universal Digital Book Encoder and
describes its main components. Section 4 discusses the
implementation of the UDBE. This implemented
system has been evaluated against existing systems
supporting image-on-text in Latin and its performance
evaluation is presented in Section 5 along with its
performance on Arabic data sets.

3. The Universal Digital Book Encoder

The Universal Digital Book Encoder (UDBE) is a
framework for the encoding of image-on-text
documents that features a pluggable architecture for
OCR engines and format encoders.

3.1. Overview

The main concept in the design of the UDBE is that
it adopts a Common OCR Format (COF) that captures
the necessary information for image-on-text
documents. OCR Converters convert recognition
results of OCR engines into the COF, and Format
Handlers encode the COF along with page images into
image-on-text documents, as shown in Figure 2.

COF

Format Handler
(X)

Format Handler
(Y)

Target Format
(X)

Target Format
(Y)

OCR Converter
(A)

OCR Converter
(B)

OCR Converter
(C)

OCR Engine
(A)

OCR Engine
(B)

OCR Engine
(C)

Conversion Encoding

Figure 2. Concept of the UDBE
The UDBE allows for the integration of any OCR

engine through OCR Converters, which convert the
native OCR format into the COF, rendering the UDBE
independent of the native format, which is specific to
the engine. Likewise, it allows for the support of any
target format through Format Handlers.

The components of the UDBE are illustrated in
Figure 3. The two blocks of input are processed page
images – which are enhanced versions of original page
images – and OCR text in the native format of the OCR
engine used. For each book, the UDBE launches an
independent process for each of the Format Handlers
to process the input blocks and write a file in the target
format. Eventually, a digital repository collects these
files to publish.

Native OCR
Format Page Images

OCR Converter

Image Encoder

Text Inserter

Page Bundler

Image-on-Text
Document

Driving Module

Encoded Image

Searchable
Image

Form
at H

andler

Figure 3. Components of the UDBE
Each Format Handling process consists of three

general steps. Firstly, each page image is encoded
according to the compression scheme of the target
format. At this point, the encoded images are not
associated with text, and, therefore, are unsearchable.
Secondly, the COF is traversed and OCR text is
inserted in a layer behind each encoded image,
reconstructing pages into searchable documents while
preserving their original layout. In the last step of
Format Handling, all encoded images are concatenated
into one document with multiple pages, which is the
light-weight image-on-text bundle that is eventually
published. Finally, a driving module binds together all
OCR Converters and Format Handlers. This driving
module invokes the appropriate OCR Converters for
native OCR data and invokes the Format Handlers to
produce target formats. The driving module enables the
encoding to proceed in an automated fashion.

3.2. Common OCR Format

Integration of an OCR engine consists of the
implementation of an OCR Converter that converts the
engine's native format into the Common OCR Format

(COF). In coming up with a model that captures the
two necessary pieces of OCR data – word strings and
bounding box coordinates – it would have been
desirable to adopt a format that is a standardized
representation of OCR data. It was revealed that,
although there is currently no standard belonging to a
governing body for representing OCR data, there are
three applicable formats that are commonly used. One
is DjVuXML [4], an XML-based format modeled after
HTML that provides a scheme for describing DjVu
documents [8]. Another is the Document Attribute
Format Specification (DAFS) [5], a binary-coded
format that provides a specification for document
decomposition in applications such as document layout
analysis, OCR, and logical analysis. The third is
Analyzed Layout and Text Object (ALTO) [2], used by
CCS in the docWORKS software. Although DjVuXML
accommodates OCR text in a simple structure,
adopting a format designed for a specific purpose,
namely, describing DjVu documents, could be
inadvisable in a universal document encoding
application, because it could prove limited in
accommodating desired features. On the other hand,
although DAFS is a general purpose format for
document decomposition, adopting it could be
inadvisable for its complexity and being binary-coded.
And while ALTO contains many of the features desired
in a COF and has been heavily used by the Library of
Congress and others, it lacks certain desirable
capabilities, such as image maps and specialized
viewer preferences. Therefore, due to the lack of an
enforced standard and the concerns mentioned
regarding DjVuXML, DAFS, and ALTO, a COF was
designed to specifically accommodate the
representation of image-on-text documents.

Document
Map

Preference

Metadata

Page
Image

Text

Area

Page
Column

Region

Paragraph

Line

Word

Character

Figure 4. Structure of the COF
The UDBE's COF is an XML [20] format inspired

by both DjVuXML and DAFS. Unlike DAFS, the COF
is not binary-coded but based on XML since it is a
widely used standard that represents information in a
clear and self-explanatory fashion, making it less
complex to parse than binary data. The structure of the
COF is illustrated in Figure 4. An image-on-text
document in the COF consists of pages, maps, a
preference block, and metadata. Text elements contain
multilingual strings with bounding box coordinates.

The COF embeds CSS formatting, HTML-like image
maps, image-on-text-specific viewer preferences, and
Dublin Core bibliographic metadata. It is always
possible to write an OCR Converter for an OCR engine
as bounding box information is always available as a
product of layout analysis, segmentation, and
recognition.

3.3. Format Handling

Format Handlers are the part of the UDBE that
processes page images and OCR text in the COF to
produce files in target formats for publishing. Format
Handling is broken down into three general functions:
Image Encoding, Text Insertion, and Page Bundling.
For each target format, a separate module handles each
of these functions.

3.3.1. Image Encoding. The Image Encoder receives
each individual page image and encodes it into an
individual file in the target format. Because page
images constitute the greater chunk of data relative to
OCR text, and because page images are the viewable
piece in image-on-text documents, the primary concern
of Image Encoding is reducing file size and preserving
quality. Based on an image’s properties, the Image
Encoder decides on the compression scheme to apply
according to the target format’s specification. Certain
compression algorithms cause a level of loss of detail
in order to achieve larger compression ratios. In
developing an Image Encoder, therefore, it is important
to judge to what degree a lossy encoding method is
acceptable. In addition, Image Encoding could perform
resolution downsampling in order to further cut down
the file size at the expense of quality by representing
the image in fewer pixels. The effects of resolution
downsampling are less obvious in RGB images
containing simple textures than in bilevel images
containing text.

3.3.2. Text Insertion. In Text Insertion, encoded page
images are associated with OCR text to produce
searchable images. The Text Inserter processes image-
only documents in the target format and text in the
COF then encodes image-on-text documents in the
target format. In essence, an image-on-text format is
capable of containing images and text, such that images
are displayed and text is not but is highlightable based
on settable parameters. For instance, a format that is
capable of displaying images, positioning text using
pixel coordinates, setting text width and height
independently, and transparency is a valid image-on-
text format. The Text Inserter of such format would

place each word from the COF at its pixel location in
the target format, set the text object's width and height
to match the word's bounding box, and apply
transparent rendering to the text.

3.3.3. Page Bundling. Page Bundling groups
individual searchable page images produced during
Text Insertion into one bundle containing all pages.
The functionality of a Page Bundler consists of
constructing a blank document in the target format and
inserting each individual searchable page image into it
in the correct page sequence.

4. Implementation

The current implementation of the UDBE supports
Arabic, Persian, and 18 Latin languages through the
integration of a multilingual OCR engine, and encodes
into two target formats, namely, DjVu and PDF. This
implementation is continuing to be used at BA and has
thus far produced more than 23,000 books. The
scanned images are manually processed for text
enhancement to improve the recognition accuracy of
the OCR output. It is expected that future OCR suites
supporting Arabic will be able to automate this process.

4.1. OCR Converter for Automatic Reader

An OCR Converter was implemented for the native
format of Automatic Reader, an OCR product that
features engines for the recognition of Arabic, Persian,
and 18 Latin languages, such as English, French, and
Spanish. Automatic Reader also features a learning
system, which allows for the definition of custom
recognition fonts to expand the types of prints the
engine handles and to improve recognition accuracy.
This OCR Converter, thus, enables the UDBE to
handle digitized books in a wide range of languages.
Because this current implementation does not
recognize text blocks and paragraphs, elements in the
COF higher than the line element are unused. In the
future, bounding box coordinates could be analyzed to
provide a more detailed description of the text.

4.2. Format Handlers for DjVu and PDF

DjVu and PDF are two formats that were found
suitable for use in publishing of digitized books
according to the requirements outlined earlier. Since
they are the only known formats to support image-on-
text in light-weight documents suitable for Web
publishing, support for these two formats was
integrated into the UDBE.

Developed at AT&T Labs, DjVu [8] is an image
compression technique and a file format specifically
designed for building high-visual-quality digital
libraries. The compression technique uses a Mixed
Raster Content (MRC) imaging model, where advanced
image analysis is used to segment the image into layers
and compress each layer separately using the algorithm
that best suits its content. Traditional image
compression models are either designed to compress
natural images with few sharp edges or images
containing text and mostly consisting of sharp edges.
DjVu works by combining these two approaches on
document images through segmentation, which
involves the separation of text from background and
pictures.

The UDBE’s implementation of the DjVu Format
Handler was built around DjVu Libre in order to
provide a purely free solution. Alternatively, however,
a solution built around LizardTech’s Document
Express was also implemented. While bilevel encoding
in DjVu Libre is competitive with LizardTech’s, color
Image Encoding remains superior in the commercial
product. Both DjVu Libre and LizardTech’s Document
Express use the JB2 shape clustering compression
scheme with bilevel content and the IW44 wavelet-
based compression scheme with RGB content.
However, LizardTech’s Document Express features an
image segmenter to separate text, illustrations, and
background, compressing each separately into an MRC
document [8].

The Portable Document Format (PDF) [15] from
Adobe has earned an extremely wide popularity. The
PDF format is robust enough to represent a wide
variety of document types, including image-on-text
documents. The three functionalities of Image
Encoding, Text Insertion, and Page Bundling have
been implemented in a PDF Format Handler.

The PDF Image Encoder encodes each page image
into a PDF page with equivalent dimensions to the
input using one of the compression methods supported
by the PDF specification [15] that best suits the type of
the image and yields the smallest file size. Specifically,
CCITT G4 is used with bilevel images, and JPEG,
which is based on the Discrete Cosine Transform
(DCT), is used with RGB images. The image resolution
is also downsampled to 150 dpi in order to further
reduce the file size. As the PDF format does not
provide for image-on-text functionality as an explicit
specification, the PDF Text Inserter makes use of the
PDF text and font operators to emulate bounding box
behavior. In the UDBE, where supporting Arabic was a
primary objective, it was necessary to ligaturize Arabic
characters in order for matched text to display correctly

in the search side pane in Adobe Reader. This
ligaturization consists of shaping each character into its
appropriate presentation form according to its position
in the word. Ligaturization is required for cursive
scripts, and, therefore, is not applicable to Latin
languages. Finally, the PDF Page Bundler joins
together individual image-on-text PDF pages into a
single multipage PDF file, which is linearized in order
to optimize it for “fast Web viewing.” Linearization
allows pages to be downloaded in the background as
the document is being viewed.

Support for the PDF output target was written in the
Java programming language based on the iText API
(www.lowagie.com/iText), an open source API for
manipulating documents in the PDF format.

5. Performance evaluation

To evaluate the performance of the UDBE in
producing image-on-text output in terms of file size, we
compare image-only and image-on-text documents
produced by different systems across eight different
data sets of digitized books. The eight data sets are
made up of four data sets of Arabic books and four data
sets of Latin books. In turn, each of these four data sets
is made up of two bilevel and two RGB data sets.
Finally, each of these two data sets consists of a data
set of small books and a data set of large books,
selected according to page dimensions.

For each book in each data set, we produce an
image-only and an image-on-text DjVu using the
UDBE's implementation based once on DjVu Libre and
once on LizardTech's Document Express. In addition,
we also produce an image-on-text DjVu using
Document Express's built-in Expervision OCR engine,
which applies only to the four Latin data sets. Along
with DjVu, we produce image-only and image-on-text
PDF documents using the UDBE's implementation.
Further, we produce image-only PDF documents for all
sets in addition to image-on-text documents for Latin
sets using Acrobat. Finally, we produce image-on-text
documents for Latin sets using the FineReader OCR
software. Image-only and image-on-text output is
compared in terms of file size. Output from different
systems is also compared. Average page file sizes of
image-only and image-on-text output of the bilevel-
small sets, the bilevel-large sets, and the RGB-large
sets are plotted in Figure 5 through Figure 10. Plots of
the two RGB-small sets were omitted due to space
constraints. Note that FineReader's image-on-text
output is plotted along with a plot of Acrobat's image-
only output for comparison purposes.

Latin/Bilevel/Small

0

5

10

15

20

25

30

35

40

45

UDBE PDF Acrobat FineReader UDBE DjVu
(Libre)

UDBE DjVu
(LT)

LizardTech

Av
er

ag
e

Pa
ge

 F
ile

 S
iz

e

I-Only
I-on-T

Figure 5. Latin/bilevel/small
Latin/Bilevel/Large

0

50

100

150

200

250

300

350

400

UDBE PDF Acrobat FineReader UDBE DjVu
(Libre)

UDBE DjVu
(LT)

LizardTech

A
ve

ra
ge

 P
ag

e
Fi

le
 S

iz
e

I-Only
I-on-T

Figure 6. Latin/bilevel/large
Examining the file size increase associated with the

UDBE's image-on-text compared to image-only, the
increase in image-on-text PDF averages 5 kB in the
Latin-bilevel-small set, as in Figure 5, and 19 kB in the
large set, while the increase in image-on-text DjVu
averages 2 kB in both bilevel sets. In Arabic-bilevel,
these increases average 2 and 5 kB for PDF in the
small and large sets, as shown in Figure 7 and Figure 8,
respectively, and 1 and 3 kB for DjVu, respectively.
The increase shows to be quite small and this extra
overhead is justified by the added value and
functionality associated with image-on-text formats. It
is noticed also that for Latin sets the PDF average
increases incurred with the UDBE are almost identical
to those incurred with Acrobat and FineReader, and,
similarly, DjVu average increases incurred with the
UDBE are almost identical to those incurred by
LizardTech.

Across Latin plots, it is apparent that the UDBE's
image-on-text output is equivalent in size to image-on-
text produced from other systems, namely, Acrobat and
FineReader for PDF, and LizardTech for DjVu. In the
case of Arabic, where an alternative to the UDBE for
image-on-text is not available, it is observed that the
UDBE's image-only PDF output is almost the same size

as Acrobat's, and the UDBE's image-only DjVu output
is equivalent to what DjVu Libre and LizardTech
would have independently produced. Since the text
overhead incurred was found to be small and image-
only file sizes comparable to other systems, this
indicates that the UDBE performs well for producing
Arabic image-on-text documents.

Arabic/Bilevel/Small

0

5

10

15

20

25

UDBE PDF Acrobat UDBE DjVu (Libre) UDBE DjVu (LT)

A
ve

ra
ge

 P
ag

e
Fi

le
 S

iz
e

I-Only
I-on-T

Figure 7. Arabic/bilevel/small
Arabic/Bilevel/Large

0

10

20

30

40

50

60

70

80

UDBE PDF Acrobat UDBE DjVu (Libre) UDBE DjVu (LT)

A
ve

ra
ge

 P
ag

e
Fi

le
 S

iz
e

I-Only
I-on-T

Figure 8. Arabic/bilevel/large
For RGB-large data sets shown in Figure 9 and

Figure 10, it is similarly observed that the text
overhead imposed by image-on-text is small and the
relative increase is even smaller than in bilevel sets due
to the nature of large color images, which occupy large
memory space. From Figure 9, it is noted that Acrobat's
image-on-text output presents an unusually large
overhead, which is attributed to Acrobat's conversion
of JPEG images to ZIP compression during OCR,
which is less efficient for continuous tone images.

In bilevel as well as RGB plots, it is evident that
DjVu consistently yields higher compression ratios
than CCITT G4 and JPEG compression in PDF with
the exception of DjVu Libre's color compression.
While DjVu Libre's bilevel compression generally
proves competitive with LizardTech, its color
compression lags behind. In fact, LizardTech's
performance on RGB sets consistently outruns PDF in

general and DjVu Libre in particular, which is
attributed to LizardTech's image segmentation
functionality that enables the encoding of MRC images
[8].

Latin/RGB/Large

0

500

1,000

1,500

2,000

2,500

3,000

3,500

UDBE PDF Acrobat FineReader UDBE DjVu
(Libre)

UDBE DjVu
(LT)

LizardTech

A
ve

ra
ge

 P
ag

e
Fi

le
 S

iz
e

I-Only
I-on-T

Figure 9. Latin/RGB/large
Arabic/RGB/Large

0

200

400

600

800

1,000

1,200

UDBE PDF Acrobat UDBE DjVu (Libre) UDBE DjVu (LT)

A
ve

ra
ge

 P
ag

e
Fi

le
 S

iz
e

I-Only
I-on-T

Figure 10. Arabic/RGB/large

6. Conclusion

The image-on-text approach offers a robust solution
to digital publishing in imaging-and-OCR-based digital
libraries, as it seamlessly combines the best in the
previous image-only and text-only publishing
approaches. Adequate publishing of image-on-text
must provide efficient image compression, multilingual
text support, and multipaging. The presented UDBE
framework renders it possible to utilize OCR results of
any engine to compile image-on-text documents in any
valid target format by adopting a Common OCR
Format (COF). The current implementation of the
UDBE showcases the concept with an OCR Converter
for Automatic Reader and Format Handlers for DjVu
and PDF, making it possible to produce multilingual –
namely, Latin, Arabic, and Persian – image-on-text
documents in an automated fashion. It has been shown
that for either DjVu or PDF, the increase in file size

after adding hidden text layers to image-only
documents remains within reasonable bounds,
justifying the decision to publish scanned documents in
image-on-text to achieve the strongly desired
searchability and ability to otherwise process text in
applications such as machine translation. It has also
been shown that the performance of the UDBE is
comparable to other systems capable of producing
Latin image-on-text, namely, Acrobat, FineReader, and
Document Express.

Further work is necessary to integrate more OCR
engines and research alternatives to DjVu and PDF.
The current PDF Image Encoder also requires further
work to achieve better compression through JBIG2 and
JPEG2000 encoding and possibly through image
segmentation and MRC. In addition, extensions to
existing viewers is desirable to add features specific to
image-on-text.

7. Acknowledgments

We thank Mohamed Ramadan for contributing in
writing the OCR Converter for Automatic Reader and
Text Inserter for PDF.

8. References

[1] Allen, J., and Becker, J. The Unicode Standard, Version
4.0. Addison-Wesley, Reading, MA, 2003.

[2] ALTO: Analyzed Layout and Text Object.
http://www.ccs-gmbh.com/alto/.

[3] Ding, X., Wen, D., Peng, L.; and Liu, C. Document
digitization technology and its application for digital Library
in China. In Proceedings of the first international conference
on Document image analysis for libraries (2004). 46-53.

[4] DjVuXML manual page.
http://djvulibre.djvuzone.org/doc/man/djvuxml.html.

[5] Document Attribute Format Specification. RAF
Technology, Inc., Redmond, Washington, 1994.

[6] Entlich, R., Olsen, J., Garson, L., Lesk, M., Normore, L.,
and Weibel, S. Making a digital library: the contents of the
CORE project. ACM Trans. IS, 15, 2 (Apr 1997), 103-123.

[7] Giuffrida, G., Shek, E., Yang, J. Knowledge-based
metadata extraction from PostScript files. In Proceedings of
the fifth ACM conference on Digital libraries (San Antonio,
US, Jun 2000). 77-84.

[8] Haffner, P., Bottou, L., Howard, P., Le Cun, Y. DjVu:
analyzing and compressing scanned documents for Internet
distribution. In Proceedings of international conference on

Document analysis and recognition (ICDAR '99) (1999).
625-628.

[9] Hong, T., Srihari, S. Representing OCRed documents in
HTML. In Proceedings of the fourth international conference
on Document analysis and recognition (Aug 1997). 831-834.

[10] Ishitani, Y. Document transformation system from
papers to XML data based on pivot XML document method.
In Proceedings of the seventh international conference on
Document analysis and recognition (Aug 3-6, 2003). 250-
255.

[11] Lawrence, S., Bollacker, K., Giles, C. Indexing and
retrieval of scientific literature. In Proceedings of the eighth
international conference on Information and knowledge
management (Kansas City, US, Nov 1999). 139-146.

[12] Lefevre, P., and Reynaud, F. ODIL: an SGML
description language of the layout structure of documents. In
Proceedings of the third international conference on
Document analysis and recognition (Aug 14-16, 1995). 480-
488.

[13] Lesk, M. Substiuting images for books: the economics
for libraries. In Proceedings of symposium on Document
analysis and information retrieval (Apr 1996). 1-16.

[14] Marinai, S., Marino, E., Cesarini, F., and Soda, G. A
general system for the retrieval of document images from
digital libraries. In Proceedings of the first international
workshop on Document image analysis for libraries (DIAL)
(2004). 150-173.

[15] PDF Reference, Fourth Edition. Adobe Systems, Inc.,
San Jose, CA, 2004.

[16] Phelps, T., Wilensky, R. The Multivalent browser: a
platform for new ideas. In Proceedings of the ACM
symposium on Document engineering (Atlanta, US, Nov
2001).

[17] Smeulders, A., Worring, M., Santini, S., Gupta, A., and
Jain, R. Content-based image retrieval at the end of the early
years. IEEE Trans. PAMI, 22, 12 (Dec 2000), 1349–1380.

[18] Taghva, K., Nartker, T., Borsack, J. Information access
in the presence of OCR errors. In Proceedings of the first
ACM workshop on Hardcopy document processing (Nov
2004).

[19] Wang, Y., Phillips, I., and Haralick, R. “From image to
SGML/XML representation: one method. In Proceedings of
Document layout interpretation and its application (DLIA)
(1999).

[20] Yergeau, F., Bray, T., Paoli, J., Sperberg-McQueen, C.,
and Maler, E. Extensible Markup Language (XML), 1.0,
Third Edition. The World Wide Web Consortium. 2004.

http://www.ccs-gmbh.com/alto/

	1. Introduction
	2. Related work
	3. The Universal Digital Book Encoder
	3.1. Overview
	3.2. Common OCR Format
	3.3. Format Handling

	4. Implementation
	4.1. OCR Converter for Automatic Reader
	4.2. Format Handlers for DjVu and PDF

	5. Performance evaluation
	6. Conclusion
	7. Acknowledgments
	8. References

