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Laplace Transforms, Moment Generating
Functions and Characteristic Functions

2.1. Definitions:

Let o(t) be defined on real line.
a. Moment Generating Function (MGF)

MGF:/ et (t)dt

— 00

which exists if/ e p(t)dt] < oo



b. Characteristic Function (CF)

CF = / eVio(t)dt

— 00

oo

which exists if/ leWip(t)|dt < oo

— OO

Since e’¥! = cos yt + 1 sinyt, |e¥!| =1

oo

CF exists if/ (1) |dt < o0

— OO



c. Laplace Transform

Let o(t) be defined on [0, co) and assume

/ el p(t)dt < o0
0

for some value of ¢ > 0.

Characteristic function of e=*0*x () is

CF / e~ Wem ot p(t)dt  (sign of iyt could be + or -).
0

CF / e~ (@oHWt 5 (1) dt
0

S To + 1y
CF / e tp(t)dt for R(s) > xg
0

©*(s) is Laplace Transform of o(t).




o (s) = / Tttt

Since ¢(t) defined on [0, 00), fore > 0

oo o0

©*(s) = lim e *to(t)dt = / e *Lo(t)dt.
0

e—0 e +

Often a script L is used to denote a LaPlace transform; i.e.

LAp(t)} = ¢"(s)
Suppose f(t) is a pdf on |0, co),

, R(s) >0

Laplace transform is appropriate for non-negative r.v.




If the cdf is F'(¢ /f /dF )
0

F(s) = Ome—stdm)

Is Laplace-Stieltjes Transform.

Note: E(e™*") = f*(s)
ff0)=1, 0<f*(s) <1




2.2 Theorems on Laplace Transforms (LT)

a. Unigueness Theorem.
Distinct probability distributions have distinct Laplace Transforms

b. Continuity Theorem

Forn=1,2,...,let {F,(t)} be asequence of cdf’s such that F,, — F.
Define { f*(s)} as the sequence of LT suchthat £ {f,.(¢)} = f}(s)
and define f*(s) :/ e “'dF(t).

0

Then f*(s) — f*(s) and conversely if f*(s) — f*(s), then
Fo(t) — F(1)




c. Convolution Theorem

If 77,7, are independent, non-negative r.v. with p.d.f f1(¢), f2(¢t) then

/ fi(7) f2(t — 7)dT

thepdfof T'="T, + 15 is

and L {f(t)} = fi(s)f5(s)

In general if {T;} ¢=1,2,...,n areindependent non-negative r.v.,
then the Laplace transform of the pdfof T'=1T4 +--- +1T1,, IS

L{rmr=11s)




d. Moment Generating Property

Suppose all moments exist.

S—'mn where m,, = E(T")
n.




e. Inversion Theorem

Knowledge of f*(s). The inversion formula is written
1 c+100
=5 | s
271 C— 100

where the integration is in the complex plane and c is an appropriate

constant. (It is beyond the scope of this course to discuss the inversion
formula in detail).

Notation: £ {f(t)} = f*(s)
f(t) =L7Hf*(s)}

where £71 { } is referred to as the “Inverse Laplace Transform”.




Example: Exponential Distribution

Xe Mfort >0
/X, V(t)=1/)°




A
A+ s

A

L{e M} = o

,C_l{ } — \e M

£{€_>\t} = (A + S)_1, ﬁ_l{()\ 4+ s)_l} _ oAt

1 c+100
- est *(S)ds

270 oo

1 c+100 , )\
- S d
27mi c (AJFS) s

Cc—100
1 c+100
o et (A + s) " 'ds

270 J o ioo

LA+ 97




LA+ =
Differentiating w.r. to \
LTHA+5)72) = te

again 5—1{2()\ +5)73) = $2 o=t

(n — 1) times E_l{(n — 1)!()\ + S)—n} — n—lp—At

= i {tn:(;/\t} — (A +5)"", T(n)

, {)\(Atij(:)e—”} ()



)\()\t)n—le—kt
I'(n)

Note: IS gamma distribution.

If {T;} i =1,2,...,n are independent non-negative identically
distributed r.v. following an exponential distribution with parameter A and

T'=T14+...+1,




Example: Suppose 17,15 are independent non-negative random variables
following exponential distributions with parameters A1, Ao (A1 # A2).

What is distribution of T' = 17 + 157

f(s) = f1(s)f5(s) = (Al)\jr8> (A;i‘s).

f*(s) can be written as a partial fraction; i.e.

Al A2 o Al()\g + S) + AQ()\l + S)

Cits)  ats)  (ats)ats)

A1 A2
Ao — Ay’

Ay = —A4




Since L~H{(A+5)71} =M

fit)y = L£7Hf(s)} AL+ 8) 7+ AL H (Ao +5) 71

A16_>‘1t -+ A26_>‘2t

— €

AMA2 g
Mo — Mg e

—)\gt}

Suppose 17,15, T3 are non-negative independent r.v. so that 77 is
exponential with parameter A\, and 15, T5 are exponential each with
parameter \y. Find pdf of T' = T3 4+ 15 + T3.

* L )\1 )\2 2_ Al Bl B2
fs) = (Al—i—S) <A2+S> B )\1—|—8+)\2-|-S+()\2—|—S)2

f(t) = Aje™ ™M + Bre 2! 4 Bote 2!




Homework:
Show A; = (A1 — A2) 2\ \3
By =— (A1 —A2) 7 4+ (M = A2) 7% A A3
By = (A1 — X2) 1A A3

In general if f*(s) = (\;/X\i+s) ¢ =1,2,... ,nand

f*(s) =11~ f7(s), then f(t) is called the Erlangian distribution.
(Erlang was a Danish telephone engineer who used this distribution to
model telephone calls).




2.3 Operations on Laplace Transforms

L{e)} = (A+s)7!
LM = T(n)/(A+5)"

Setting A = 0 in above




Homework: Prove the following relationships

1. L {/Otgp(x)dx} - *0*8(8)

Prove (1) and (2) using integration by parts

Prove (3) by successive use of (2).




Suppose f(t) is a pdf for a non-negative random variable and

/ fade. Q)= [ f(w)is

Since £ {fo r)dr} = ( )

LAF({); = F*(s) =
Since Q(t) =1— F(t)

LAQ()} =Q"(s) =




2.4 Limit Theorems

lim ¢(t) = lim sp™(s)

t—0+t §—00

LA{' ()} = sp™(s) —p(07)

ES

lim ¢ (s) = lim [sp*(s) — ©(0™)]

§—00 §—00




Since L {¢'(t)} = sp*(s) — ¢(07)

lim [s¢"(s) — (07)] = lim [ip(t) — p(07)]

s—0 t— o0

= lim sp*(s) = lim ¢(t)

s—0 t—o0




2.5. Dirac Delta Function

Sometimes it is useful to use the Dirac delta function. It is a “strange”
function and has the property.

0fort #0
oo t=20

o(t)

Leth >0

ift >0

If —h<t<0

0
1
h
0

Ift < —h




Define

— 0 fort#£0
5(t) = lim O(t, h) = lim 20+ = UM £
h—0 h—0 h ~ forf— 0

Consider

/OOO p(x)o(t — x)dx

e

{/OOO o(x)U(t —x + h)dx — /Ooo o(2)U(t — :E)d:z:}

1 t—x+h>0

Since U(tx+h){

0 otherwise




. {go(t + eh)h}

h—0 h

(by mean value theorem)

Similarly ¢(t) = /Ooocp(t —x)d(x)dx




Special Cases
o(x) =1 forall z

Suppose p(x) = e 5. Then

/ e **f(x — t)dr = e
0

/Oooe_sx(S(a:)da: = L{i(z)} =1




Example 1 Consider a non-negative random variable 71" such that
pn = P{T =t,}. Define

f(t) — an5(t — tn)




Example 2

Consider a random variable T such that p = P{T = 0} butfor 7" > 0

to
P{t: <T <ty} :/ q(x)dz
t1

= f(t) =pi(t)+(1—p)g()
f*(s) =p+ (1 —p)g(s)
Another way of formulating this problem is to define the random variable
T by

T 0 with probability p
with pdf ¢(¢) fort > 0

This is an example of a random variable having both a discrete and
continuous part.




x = 1 cosb,

2.6 Appendix
ELEMENTS OF COMPLEX NUMBERS

(7, y)

0

Rectangular Polar Coordinates
Coordinates r = Modulus
6 = Amplitude

y =rsinb




Complex no. representation:  z =z + iy, r = /22 + y?

0 =tan ' Z
Y
| 2| = absolute value=r i: to be determined
z = r(cosf + isinf) = re*?

Suppose z; = a; + b,

Addition/Subtraction: 2z + zo = (a1 * as) + (b & bs)




Multiplication:

zi = 1% 2120 = rreetn1t02) pipo = r=riry, =01+ 0,

2129 = rira(cos(01 + 02) +isin(0, + 02) =z + 1y
r =T1T2 COS((91 —|—92) = 7“17”2(608 91 COS (92 —sin (91 sin 92) = aijas —blbg

Yy = r11ro8in(fy 4+ 02) = riro(sin 6 cos O3 + cos 01 sinfy) = bias + a1bs
= 2125 = (a1 + iby)(ag +iby) = ajas + i[a1by + asbi] + i [bybs]

If i2 = —1 Re(z122) = ajas — b1bs

3,12 =—1, 3=—i, i*=1

An _ 1

— ,L'4n—|—1 — ,[:, ,L'4n—|—2 — 1 ,[:4n—|—3 —

Y Z?

2" = r(cosf 4+ isin6)]" = r"(cosnb + isinnb)




Exponential function

0

202 303
1—|—29—|—T—|—T—|—...
92 9+ ¢S 93 @5
1— —+ 2 4 Vi — 4+
=gty gt )Hil0—5+5

cosf) +isinf,

cosf —isinf, cos(—0) = cosf; sin—0 = —sinf
el 1 o—if oif _ =it
cosf = , sinf = ,
2 21

cosO0=1, sin0=0

Since € = cosf +isin®: z = ret?

If 2 = e TW = e%e¥ : e : modulus, e¥ :amplitude

2129 = 6x1—|—iy1 . 6$2-|—iy2 — 6w1+x2+i(y1+y2)




MOMENT GENERATING AND
CHARACTERISTIC FUNCTIONS

MGFE: (t) = E(e!Y) = [T _etdF(y)

€
— 00

Y(t) exists if [ | e |dF(y) < o0

Sometimes mg f does not exist.

Importance of M GF

Uniqueness Theorem: If two random variables have the same mg f, they
have the same cdf except possibly at a countable number of points having
0 probability.




Continuity Theorem: Let { X, } and X have mgf {1, (t)} and ¥ (t) with
cdf’s Fy,(x) and F'(x). Then a necessary and sufficient condition for
nh_{%OFn(X) = F'(X) isthat for every ¢, lim,, .o ¥, (t) = 9(t), where
(t) is continuous at ¢t = 0.

Inversion Formula: Knowledge of v (t) enables the pdf or frequency
function to be calculated.

Convolution Theorem' If Y, are independent with mg f 1;(t), then the
mgf of S = ZY- is g(t) sz

It i(t) =w<> = s(t) = ¥(0)"




MOMENT GENERATING FUNCTIONS
DO NOT ALWAYS EXIST!

For that reason one ordinarily uses a characteristic function of a
distribution rather than the mg f.

Def. The characteristic function of a random variable y is
o(t) = E(eW) = / e™WdF (y) for —oo <t < oo

— OO

o0l = |Ee| < [ je]ar) = [ apg) =1

— OO

as |e'V| = 1.

= Characteristic Functions always exist.




Relation between mg f and cf.

QD(T) (0) = i"m,

The characteristic function is a Fourier Transform; i.e. for any function
9(y)

F.T.(q(y)) =/OO eWq(y)dy  ifq(y)ispdf = c.f.

— 00




RELATION TO LaPLACE TRANSFORMS

Let Y be a non-negative r.v. with pdf f(y); i.e. P{Y >0} = 1. Thenitis
common to use Laplace Transforms instead of characteristic functions.

Def.: s=a+1ib (a > 0). Then the Laplace Transform of f(y) is

7 (s) / e f(y)dy

Since e~V f(y) = e~""e W f(y)
The Laplace Transform is the equivalent of taking the Fourier Transform

of e f(y)

Ex. Exponential p(t) = (1 — %)~

e Y e Ndy =
]C YTANF




MOMENT GENERATING FUNCTIONS AND
CHARACTERISTIC FUNCTIONS

Bernoulli
Binomial
Poisson

Geometric

Uniform over (a, b)

Normal

Exponential




INVERSION THEOREM

Integer valued R.V.
LetY =0,4+1,+2,... withprob. f(j) = P(Y = j)

oo

of o(t)=E(™) =) e f(j)

— 0

Inversion Formula:




o

> € E3)

j=—00

/7T [cos(j — k)t + isin(j — k)t]dt

— 7T

| Tsin(j—k)t | T cos(j— k)t

: +1 — : for 3 £ k
T J—k —Tr (J— k) 7

sinnm = 0 for any integer n.

cosnm = cos(—nm)

/” 0 forj#£k
—Tr 27Tf0rj:]€




INVERSION FORMULA FOR CONTINUOUS
TYPE RANDOM VARIABLES

Let Y have pdf f(y) and cf o(t) which is integrable; i.e.
| etldr<o

Inversion Formulae:

1) =5 | ety

:% .

EX. Normal Distribution (standard normal)

00 —y?/2
1ty €
&




Replace ¢ by —¢

Interchange symbols ¢ and y

0o —t?)2
/ e—zty
oo V2

Divide by /27

o0 —y2/2
1 et /2q — C v/
2T J_

which is the inversion formular for N (0, 1).



UNIQUENESS THEOREM

Let X be an arbitrary r.v. and let Y be N(0,1) where X and Y are
Independent. Consider Z = X + c¢Y (cIs a constant).

oz (t) = px(t)e T/

Note that ¢z () is integrable as |px (t)| < 1

f(z) = 2 / T emite g (1)dt

:% .




Fz(b) — Fz(a) = /abf(Z)dZ
/ 27T/ o~ it(z+cy) 0. (te —c*t%/2 gy

[/ ztxdx] pr( ) —02t2/2€—itcydt
27T — 00 a

letc - 0= 2z — x and dz — dzx

R0 - =5 [ (S ettt

=- The distribution function is determined by its c.f.
= |If two r.v.’s have same characteristic function they have the same
distribution function.




Examples

Double Exponential  f(x) = 3 — 00 < x <00

2

oo — OO

el — e~ Il g = 5 / [costa + isintz]e” *dx
Since sin(—tx) = —sintx and cos(—tx) = cos(tx)

oo

(costz)e1*ldx :/ (cos tx)e™ *dx
0

tsintx — costx] 1

= | L _
o 1+ ¢2 142

as sin0=0, cosO=1

Double Exponential is sometimes called Laplace’s Distribution.




EX. What s c. f. of the Cauchy distribution which has
pdf f(y) = sapm — — 0 <y <o0?

Note that by the inversion formula for the double exponential

16|y| _ i ety 1 dt
2 27 J_ o 1+ t2

Hence for the Cauchy distribution

oo




PROBLEMS

1. LetY beanyr.v.
(@) Show ¢, (t) = E|costY] + iE[sintY]
(b) Show ¢_,(t) = E|costY| —iE[sintY]
(©) Show _, () = 2, (—1)

2. Let Y have a symmetric distribution around 0, i.e. f(y) = f(—y)
(@) Show E(sintY) = 0 and ¢, () is real valued.

(b) Show @, (—t) = @, (t)

3. Let X and Y be ind. ident. dist. r.v.’s. Show ¢ x_y (t) = |o.(¢)|”




4. LetY; (j = 1,2) be independent exponential r.v.’s with
E(Y;) =1/X;.
Consider S =Y; + Y,
(a) Findthec.f. of S

(b) Using (1) and the inversion theorem find the pdf of S. Hint: If

f(y) is exponential with parameter A (E(Y) =1/X), then
p(t) = 2= and o= [7 e~ A _dt = Xe™ ¥ by the inversion

A—1t A

formula.




2.7 Notes on Partial Fractions

Suppose N*(s) and D*(s) are polynomials in s. Suppose D*(s) is a
polynomial of degree k& and N*(s) has degree < k.

k

]](s—s:) (Roots are distinct)
1=1

and roots of N*(s) do not coincide with D*(*). Then

=




Substitute s = s,







Example:
Let T} be independent r.v. having pdf ¢;(¢) = \jeit (A1 # \g) and
consider T" =17 + T5.

Aif(Ai+s) i=1,2

q1(8)g3(s) = A Aa/(A1 + 5) (A2 + 8)
Aq Ao

(A1 4+ s) * (A2 + s)

D*(S) = ()\1 + S)()\Q + S), S; — —)\7;
D™(s) = (A1 +s) + (A2 + 3)

A1 A2

Ao =
27N = Ao




‘() A1\ 1 1
s) = —
7 Ao — A1 |S+A1 s+ A

Taking inverse transforms gives

A1 A2 — A1t
t) = :
a(t) = e

B e—AQt]




Multiple Roots

If D*(s) has multiple roots, the methods for finding the partial fraction
decomposition is more complicated. It is easier to use direct methods.
Example: N*(s) =1, D*(s) = (a+ s)%(b+ s)

N* 1 Aq As B

(a4 5)2(b+s) - a—|—8+ (a+ s)? +b—|—s

~ Ai(a+35)(b+s) + Az(b+ s) + B(a+ s)?

(a+s)2(b+s) (a+s)%(b+ s)

1=A1(a+s)(b+s)+ Ax(b+ s) + B(a + s)? (1)
1 =s%[A; + B] + s[Ai(a +b) + Ay + B(2a)] + [abA; + Asb + Ba?]

A1+ B=0, Ai(a+b)+ Ay +2aB =0
Aq(ab) + Asb+ Ba* =1




The above three equations result in solutions for (A1, A3, B). Another
way to solve for these constants is by substituting s = —a and s = —b In
(1); i.e.

substituting s = —bin (1)
= B=(a—-b)"? = A =—-B=—(a—b)"?

substituting s = —ain(l) = Ay =(b—a)?
Ay =—(a—b)% Ay =—(a—b)"",B=(a—b)""

A As B
(s +a)2(s+b) s—l—a,—l_ (S—I—a,)2+3—|—b

—(a—b)"%e % — (a—b) " tte " + (a — b) 2

—at

= b)Q[l +t(a —b)] +




In general if D*(s) = (s — 51)% (s — 59)%...(5s — 51,)% the
decomposition is




