

Canadian Institute for Theoretical Astrophysics L'institut canadien

L2: The Cosmic Microwave Background & the Fluctuation History of the Universe & the Basic Cosmological Parameters

COBE

The CMB shows the **hot big bang** paradigm holds, with:

SPECTRUM: near-perfect blackbody. no big energy/entropy injection at z<10^{6.8} (cosmic photosphere). Limits hydro role in structure formation

CMB comes from afar (also Sunyaev-Zeldovich Effect from distant clusters ... z>0.8)

CMB dipole: 300 km/s earth flow, 600 km/s Local Group flow

TO SHOW: gravitational instability, hierarchical Large Scale Structure, predominantly adiabatic mode

a "dark age" from hydrogen recombination (z~1100) to reionization (z~10-20)

(nearly) Gaussian initial conditions

WMAP3 thermodynamic CMB temperature fluctuations

Like a 2D Fourier transform, wavenumber Q ~ L + 1/2

Compton depth $\tau_{c} = int_{now^{2}} n_{e} \sigma_{T} c dt$ ~ $0.1 ((1+z_{re})/15))^{3/2} (\Omega_{b}h^{2} / .02) (\Omega_{c}h^{2} / .15)^{-1/2}$ $\Omega_{\rm h}h^2 = .0222 + -.0007$ $\tau_{\rm C} = .087 + .03$ (.005 PL1) $\Omega_c h^2 = .107 + .007$ $z_{reh} = 11 + -3$ $\Omega_{\Lambda} = .75 + .03$

differential visibility d exp(- τ_C) / dln a nearly Gaussian pulse at z ~ 1100, width Δ z~100, t~380000 yr

Small bump falling off from z ~ 10, with $\tau_{\rm C} \sim 0.1$

BO	OMERanG	98 Netterfield	etal 2001
UCSB	UofToronto/C	CITA Caltech	U. La Sapienza
K. Coble	D. Bond	B. Crill	P. deBernardis
P. Farese	C. Contaldi	V. Hristov	M. Giacometti
T. Montro	Dy B. Netterfield	B. Jones	A. Iacoangeli
J. Ruhl	D. Pogosyan	A. Lange	L. Martinis
	S. Prunet	P. Mason	S. Masi
		IPAC K. Ganga E. Hivon	F. Piacentini F. Pongetti F. Scaramuzzi G. Romeo
		JPL J. Bock	IROE A. Boscaleri E. Pascale
			Cardiff P. Mauskopf P. Ade Oxford A. Melchiorri UCB J. Borrill A. Jaffe

Boomerang B00 440 sq deg, B01 800 sq deg (B02 1200)

CBI:

Tony Readhead (PI), B. Mason, S. Myers, T. Pearson, J. Sievers, M. Shepherd, J. Cartwright, S. Padin, P. Udomprasert

+ CITA/CIAR gp

(+ DASI gp)

CBI Atacama desert, Chile

Natural pertubation modes in an expanding flat universe are 3D Fourier waves

Sound waves! alternating between hot & cold if we sit & watch. long waves are slow, short waves are fast.

Everybody started at same time, and we see them all at one time. Makes a characteristic pattern of waves on the sky.

$$qc = \frac{2\pi\hbar c}{\lambda} = \bar{a}(t)\omega = \bar{a}(t)\frac{2\pi\hbar c}{\lambda_e}$$

Planck distribution function

f = 1/(exp[q/(aT)] - 1)

Thermodynamic temperature T(**q**) **from f**(**q**)

d Number of photons = f d Phase Space Volume

 $= f 2 d^3 q / (2\pi)^3 d^3 x$

$$\left.rac{\partial f_t}{\partial au}
ight|_q + \dot{q}\cdot
abla f_t = ar{a}S[f_t],$$

Time derivative along the Sources, sinks, scattering processes photon direction

Photon Transport in Perturbed Geometry

$\partial \mathbf{f} / \partial \mathbf{t}|_{q} + \mathbf{q} \cdot \nabla \mathbf{f} - \mathbf{GR term} = \mathbf{aS}[\mathbf{f}]$

Green function is a delta function of a null geodesic

Picture is photons propagate freely in the curved (fluctuating) geometry, periodically undergoing small scale Thompson scattering

Regimes: tight coupling (of baryons and photons) free-streaming

Sources probed via the differential visibility

Coupled linearized equations for photons (with polarization) baryons, dark matter, neutrinos, and metric variables Modes: scalar (curvature or isocurvature), vector, tensor

Output: transfer functions for dark matter and baryons to map initial power spectrum to pre-nonlinear one (ICs for numerical simulations) & of course **C**_L

WMAP

Wilkinson Microwave Probe (WMAP) – launch June 2001, 1 year data release – Feb 11, 2003, 3 year data release – Mar 16, 2006

5 frequency channels at 23-94 GHz
3 year data – sky is covered six times
Each pixel observed ~27000 times.
Cosmic variance limited up to I~800
0.5% calibration uncertainty

WMAP3 thermodynamic CMB temperature fluctuations

WMAP3 sees 3rd pk, B03 sees 4th

CBI combined TT sees 5th pk

