1. Role of Observations in Cosmology & Galaxy Formation
 Key Results and the Standard Model (ΛCDM)
 Observational Probes of the Dark Matter Distribution

2. High Redshift Galaxies:
 Cosmic Star Formation History and Mass Assembly
 Cosmic Dawn: Searching for the Earliest Sources

3. Observational Probes of Dark Energy
 Supernovae, weak gravitational lensing and studies of large scale structure
Dark Energy is here to stay...

SNe Ia

CMB (WMAP)

LSS

Science
In 1998 two teams had measured ~100 SNe Ia at 0.01 < z < 1.0. Surprise! The Universe is accelerating, propelled by dark energy.

The Accelerating Universe

OBSERVATIONAL EVIDENCE FROM SUPERNOVAE FOR AN ACCELERATING UNIVERSE AND A COSMOLOGICAL CONSTANT

Adam G. Riess, 1 Alireza V. Filippenko, 1 Peter Challis, 2 Alejandro Clocchiatti, 5 Alan Diercks, 4 Peter M. Garnavich, 2 Ron L. Gilliland, 3 Craig J. Hogan, 4 Suuarki Jha, 2 Robert P. Kirshner, 2 B. Leibundgut, 3 M. M. Phillips, 3 David Reiss, 1 Brian P. Schmidt, 5 Robert A. Schommer, 7 R. Chris Smith, 7 Joel Spenger, 6 Christopher Stubbs, 4 Nicholas B. Suntziff, 7 and John Tonry 11

In preparation 1998 March 13; revised 1998 May 6

MEASUREMENTS OF Ω AND Λ FROM 42 HIGH-REDSHIFT SUPERNOVA

S. Perlmutter, 8 G. Aldering, 6 G. Goldhaber, 4 R. A. Knop, 3 P. Nugent, 5 P. G. Castro, 7 S. Deustua, 3 S. Fabbro, 3 A. Goobar, 3 D. Groom, 1 M. Hook, 3 A. G. Kim, 1 M. M. Kim, 4 J. C. Lee, 5 N. J. Neilsen, 4 R. Pan, 3 C. R. Pennypacker, 5 and R. Quimby

Institute for Nuclear and Particle Astrophysics, F. G. Lawrence Berkeley National Laboratory, Berkeley, CA 94720

C. Lidman
European Southern Observatory, La Silla, Chile

R. S. Ellis, M. Irwin, and R. G. McMahon

P. Ruiz-Lapuente
Department of Astrology and Astronomy, University of Barcelona, Barcelona, Spain

N. Walton
Staatsche Unternehmungen, La Palma, Spain
Why Do We Use Supernovae?

To measure distances and velocities over vast distances, we need luminous sources whose properties are homogeneous and ideally well-understood.

Supernova of type Ia are currently the best option.
Type Ia Supernovae

Thought to occur in binary systems containing an accreting white dwarf; models suggest explosion is very homogeneous
SNe Ia are not perfect standard candles

Peak luminosity correlates with width of light curves. If the shape of the light curve can be measured, empirically a corrected peak luminosity is a more precise measure of distance & can be used to trace cosmic expansion.
How does it work?

• Search for SNe using wide field cameras with modest telescopes
• Spectroscopy to get velocities (redshift) with large telescopes
• Light curve of supernova gives its peak brightness & hence relative distance
• Velocity-distance relations tracks expansion rate at various times
Discovery of supernovae with wide field cameras

• comparison of “reference” and “search” images separated by a few weeks

• panoramic cameras enable thousands of galaxies to be surveyed

• guarantees timely delivery of dozens of supernovae
Monitoring the Supernova: Light Curves

Time sequence with subtraction

Light Curves
Supernovae Multi-Color Light Curves

Can monitor supernovae in many bands (g=green, r=red, i=near infrared)
This helps derive rest-frame colors of SNe and to correct for dust extinction
Supernovae Multi-Color Light Curves

A model fits the multi-color data to get the width of the light curve, the rest-frame peak brightness and color (and dust extinction) at $z = 0.358$.

Graph:
- SNLS-04D3fk
- Graph showing flux over JD 2450000+.
Spectra confirm the type of supernova (Ia), give the redshift which measures the expansion rate of the Universe in the past.
For a given past expansion velocity, supernovae are fainter and more distant than expected.
Surprising Result!

Two (independent) teams agree

- Supernova Cosmology Project
- High Z SN Search Team

the supernovae are too faint at a given redshift!
Hubble Space Telescope very useful for precise data on the most distant SNe
Improved Data from Hubble Space Telescope

SCP 2003

No acceleration

No acceleration
How Can We Be Sure This Remarkable Result is Correct?!

Is there any other way for dimming distant supernovae that would not require a cosmic acceleration?

- **Dimming by dust** – there could be more dust at high redshift (in host galaxies or in intergalactic space)

- **Evolutionary differences in supernovae** - chemical composition may be different at early times affecting the peak brightnesses

- **SN properties may depend on type of host galaxy** – and the mix of galaxies may evolve with cosmic time
Dust in the Milky Way

Optical image revealing obscuration effects of dust

Far infrared image revealing radiation glow from warm dust
Reddening distribution for low and high z SNe

By comparing rest-frame colors of SNe, we can show that higher z SNe are not generally more dusty and dimmed than local examples.
Supernovae Classed by Host Galaxy Environment

Hubble Space Telescope imaging gives galaxy morphology & SN location
The SCP Hubble Diagram by Host Galaxy Type

(uncorrected for extinction)

- Elliptical
- Spiral
- Late/Irr

<table>
<thead>
<tr>
<th>Type</th>
<th>N</th>
<th>Dispersion (no s)</th>
<th>Λ (no s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spheroidals</td>
<td>14 (12)</td>
<td>0.195 (0.210)</td>
<td>0.58 (0.63)</td>
</tr>
<tr>
<td>Spiral</td>
<td>13 (12)</td>
<td>0.270 (0.280)</td>
<td>0.30 (0.25)</td>
</tr>
<tr>
<td>Late/Irr</td>
<td>16 (15)</td>
<td>0.300 (0.286)</td>
<td>0.83 (0.75)</td>
</tr>
</tbody>
</table>

Can deduce acceleration just from SN in dust-free ellipticals
Could Supernovae be Evolving?

The most likely evolutionary trend is in chemical composition: might expect earlier SNe to have less heavy elements - affects UV spectrum.
Over the redshift range where acceleration is seen, not much has changed in mean SN properties.
Cosmic Expansion – big surprises!

The rate of cosmic expansion could be affected by **two** ingredients:

Matter – this gravitationally slows down the expansion but by an amount which varies as the density of matter is reduced, initially dominant

Dark energy – a more general explanation of unknown form which acts as a repulsive term (possibly equivalent to the original term introduced by Einstein?)
Can we see back to the period when the Universe was not accelerating?

Hubble Space Telescope has found ~15 events with $z > 1$.
The situation so far - exciting but need more data!

Many issues unresolved but two independent groups claim evidence for a cosmic acceleration consistent with non-zero cosmological constant or "dark energy". The most distant SNe tentatively suggest deceleration.
So What Could “Dark Energy” Be?

Particle physicists believe a vacuum can still be full of particles and anti-particles in constant creation/annihilation. These exert a *negative pressure* and a repulsion over large distances.

A piston expanding with positive pressure loses energy; *negative pressure* means gaining energy in expansion by an amount which means the *vacuum energy density* is constant.
Why is a non-zero cosmological constant worrying?

Two coincidences:

- **Why so small?**

 Might expect \(\Lambda \sim \frac{m^4}{8\pi G} \text{ Planck} \)

 This is off by \(\sim 120 \) orders of magnitude!

- **"Why now?"**

 \[\frac{\ddot{R}}{R} = -\frac{4\pi G}{3} (\rho + 3p) \]

 MATTER: \(p = 0 \) \(\rightarrow \rho \sim R^{-3} \)

 VACUUM ENERGY: \(p = -\rho \) \(\rightarrow \rho \sim \text{constant} \)

What are the alternatives?

New Physics: "Dark energy":

Dynamical scalar fields, "quintessence",...

General Equation of State:

\[p = w\rho \rightarrow \rho \propto R^{-3(1+w)} \]

and \(w \) can vary with time.
Do theorists really know what’s going on?!

"The issue of dark energy dynamics is perhaps the most pressing today in cosmology" (Bassett et al 2004)

 - "Type Ia Supernova Discoveries...Constraints on Dark Energy Evolution"
 - $w(z)=w(z,w_0,w')$
 - "Our constraints are consistent with the static nature of and value of w expected for a cosmological constant and inconsistent with very rapid dark energy evolution."

- Choudhury and Padmanabhan
 - $w(z)=w(z,w_0,w_1)$
 - "The key issue regarding dark energy is to determine the evolution of its equation of state...the supernova data mildly favours a dark energy equation of state with its present best-fit value less than -1 [evolving]...however, the data is still consistent with the standard cosmological constant at 99 per cent confidence level"

- aastro-ph/0403687
 - "The case for dynamical dark energy revisited" Alam, Sahni, Starobinsky
 - $w(z)=w(1+z,A_0,A_1,A_2)$
 - "We find that, if no priors are imposed on omega_m and H0, DE which evolves with time provides a better fit to the SNe data than Lambda-CDM."
 - "Our results are consistent with the cosmological constant scenario...though we find marginal (2-sigma) evidence for $w(z) < -1$ at $z = 0.2$. With an increase in the number of type Ia supernovae at high redshift, it is likely that these interesting possibilities will be considered in the future."

- aastro-ph/0406608
 - "The foundations of observing dark energy dynamics..." Corasaniti et al.
 - $w(z)=w(a,w_0,w_1)$
 - "Detecting dark energy dynamics is the main quest of current dark energy research. Our best-fit model to the data has significant late-time evolution at $z < 1.5$. Nevertheless cosmic variance means that standard LCDM models are still a very good fit to the data and evidence for dynamics is currently very weak."

- astroph/0407364
 - "The essence of quintessence and the cost of compression" Bassett, Corasaniti, Kunz
 - $w(z)w(a,w_0,w_1)$; allows rapid changes
 - "Rapid evolution provides a superlative fit to the current SN Ia data...[significantly better than lambda]"

- astroph/0407372
 - "Cosmological parameter analysis including SDSS..." Seljak et al.
 - $w(z)=w(a,w_0,w_1)$
 - "We find no evidence for variation of the equation of state with redshift."

- astroph/0404468
 - "No evidence for Dark Energy Metamorphosis ?" Jonsson et al
 - $w(z)+w(\alpha_A,w_0,\delta)$
 - "For the ansatz proposed by Alam et al. dark energy evolution is both favored and forced...Our best fit to real data with 16 additional high redshift supernovae was consistent with the cosmological constant at the 68% confidence level."

- astroph/0404667
 - $w(z)=w(1+z,A_0,A_1)$
 - "Contrary to the claims in Jonsson et al.,...the current supernova data favours the evolving dark energy models over the cosmological constant at 1-2 sigma still holds...Better quality data expected in the future from different cosmology experiments (SNe, CMB, LSS etc.) will allow us to draw firmer conclusions about the nature of dark energy."

- astroph/0407452
 - "Probing Dark Energy with Supernovae: a concordant or a convergent model?" Virey et al.
 - $w(z)=w(z,w_0,w_1)$
 - "Concerning the wrong prior on omega_m will bias the result. Suggests weaker prior, data consistent with lambda or significant DE evolution."

- astroph/0407094
 - "Constraints on the dark energy equation of state from recent supernova data" Dicus, Repko
 - $w(z)=w(z,w_0,w_1)$
 - "Comparing models for the equation of state of the dark energy will remain something of a mug's game until there exists substantially more data at higher values of z...i.e., data not highly constrainin"
Dark Energy and \(w \)

In General Relativity, force \(\propto (\rho + 3p) \)
Equation of state has index \(w = p/\rho \)

\[
\begin{align*}
w = & \quad +1/3 \quad 0 \quad -1/3 < w < -1 \quad -1 \\
\text{Cosmological Constant (vacuum)}
\end{align*}
\]

If \(w < -1/3 \) the Universe accelerates
SNe Ia: how close to Einstein’s Λ are we?

SCP + 2dF
Knop et al 2003

HiZ
Riess et al 2004

→ consistent with Einstein’s Λ to about 10%
CFHT SN Legacy Survey (2003-2008)

71 homogenously studied SNe Ia

$w = -1.023 \pm 0.090$
Could Dark Energy be Dynamic - \(w(z) \)?
Incremental Exploration of the Unknown

More Data Sets

Test Λ

Test dynamics

More Physics

Test geometry

Test GR

Linder (astro-ph/0511197)
Tracking Dark Energy

Much interest in new experiments (ground and space) to track Dark Energy

- measure w, is it -1.00 ± 0.01?
- see if w is not constant with redshift
How to Measure Dark Energy

• **Type Ia Supernovae: velocity-distance to z \(\approx 2 \)**
 - Most well-developed with rich datasets
 - Ongoing with various ground-based/HST surveys
 - Key issue is physics/evolution: *do we understand SNe Ia?*

• **Weak lensing: growth of structure to z \(\approx 1.5 \)**
 - Less well-developed but promising
 - Might need a space telescope as distortion is weak
 - Key issues are *fidelity, calibration*

• **Baryon features in galaxy clustering to z < 3**
 - Late developer: cleanest but *requires huge surveys*
Measuring the vacuum

Vacuum affects $H(z)$:

$$H^2(z) = H_0^2 \left[\Omega_M (1+z)^3 + \Omega_R (1+z)^4 + \Omega_V (1+z)^{3(1+w)} \right]$$

- matter
- radiation
- vacuum

Alters $D(z)$ via $r = \int c \, dz/H$

And growth via $2H \, d\delta/dt$ term in growth equation

Both effects are

1. Small (need D to 2% for w to ± 0.1)
2. Degenerate with changes in Ω_m
How Gravitational Lensing Works

Weak distortion of background images by foreground mass
Signal is tiny: need to detect shape distortions of 1% or so!
Evolution of the DM Power Spectrum

Growth of DM power spectrum is a battle between dark energy and gravity.

Via redshift binning of background galaxies, it is possible to constrain w independently of SNe.

As SNe probe $a(t)$ directly, so power spectrum of DM probes evolution of structure.
Current Limits from Weak Lensing
CFHT Wide Field Survey

Not yet as developed as SNe but promising
Major issue is recovering the weak signal (technical)
At the level required, even stars are not round on best telescopes!

Raw ellipticities: 3-10% reduced to ~ 0.1% by fitting stellar data
Baryonic Features in the Large Scale Structure

Weak residual of acoustic peaks will be seen in galaxy distribution. Today, for flat geometry it should be at:

\[\lambda_s = \frac{1}{H_0 \Omega_m^{1/2}} \int_0^{a_r} \frac{c_s}{(a + a_{eq})^{1/2}} da = 150 \text{ Mpc} \]

Confirmed at 3-4\(\sigma \) by 2dF (Cole et al) and SDSS (Eisenstein et al)

Peebles & Yu 1970; Sunyaev & Zel’dovich 1970
Physics of Baryon Oscillations

CMB features arise from acoustic waves in *photons and baryons*, whereas galaxy distribution depends on *dark matter and baryons*.
Importance of Baryonic Oscillations

- Aren’t we just revisiting and confirming the physics of the CMB?
- Signal is weak: need to probe large volumes \(\approx \text{Gpc}^3 \) with enormous redshift surveys to even see the signal.

- Provides clear evidence for gravitational instability picture: more convincing than indirect probes of growth of small-scale clustering usually confused by “bias”
- Confirms role of dark matter at \(z=1100 \), since without DM, signal would be much stronger
- Provides characteristic yardstick which, in principle, enables us to determine, geometrically, the angular diameter distance - redshift relation and hence a clean constraint on dark energy
Detection from the Sloan Digital Sky Survey
SDSS Luminous Red Galaxy Sample

Eisenstein et al. (2005)

46,748 LRGs 0.15<z<0.47

3816 deg² 0.72 Gpc³
Correlation function $\xi(s)$ for SDSS LRG sample
2dF Power Spectrum ÷ baryon-free version

\[\frac{P(k)}{P(\Omega_M=0.2, \Omega_b=0)} \]

Input model
Convolved with survey window
Baryon Wiggles: how it works

\[\frac{P(k)}{P_{nb}(k)} \]

Divided by smooth fit

Baryons suppress power

\[k_A \] is the “standard rod”: a periodic feature in power spectrum

Must measure ‘wiggle’ wavenumber \(k_A \) at various redshifts
• Dark energy is here to stay: it represents the new cosmological unknown

• Characterizing dark energy requires precise data at $z<3$; CMB measures will not be sufficient

• There is a sound incremental strategy:
 Is $w\neq -1$? \rightarrow Is $w\neq \text{const}$? \rightarrow What is $w(z)$?

• Observers are promoting 3 probes: supernovae, weak lensing and big redshift surveys; probably need more than one method spanning $0<z<3$

• Observationally there are big technical challenges. It may take a long time but we will get there eventually!