Supernovae

Richard McCray University of Colorado

- 1. Supernovae
- 2. Supernova Remnants
- 3. Supernova 1987A

Why are supernovae interesting?

- They are the source of all elements in the universe (except H, He, Li)
- They influence the dynamics of interstellar gas and, hence, regulate star formation
- They produce extreme physical systems: neutron stars, black holes, gamma ray bursts

Supernovae

- Historical Supernovae
- Types of supernovae
- Supernova Light Curves
- Supernova Spectra
- Basic physics of thermonuclear supernovae
- Basic physics of core collapse supernovae

Supernova 1006

- April 30, 1006
- The brightest visible supernova in history V = -10 (as bright as $\frac{1}{4}$ Moon)
- Remained visible for ~ 6 months
- Location: in constellation Scorpio
- Historical records: China, Japan, Korea, Europe, Egypt

Ali Ibn Ridwan

I will now describe a spectacular star which I saw at the beginning of my studies. This star appeared in the constellation Scorpio, in opposition to the Sun. The sun on that day was 15 degrees in Taurus and the star was in the 15th degree of Scorpio. It was 3 times as large as Venus. The sky was shining because of its light. The intensity of its light was a little more than a quarter of that of moonlight. It remained where it was and it remained in place until the Sun was in Virgo, when it disappeared at once. ...

Because the zodiacal sign Scorpio is a bad omen for the Islamic religion, people bitterly fought each other in great wars and many of their great countries were destroyed. Also many incidents happened to the king of Mecca and Medina. Drought, increase of prices and famine occurred, and countless thousands died by the sword as well as from famine and pestilence. When the star appeared, calamity and destruction occurred which lasted for many years afterwards."

HISTORICAL SUPERNOVAE

Date (AD)	Туре	Magnitude at Max	Discovered by	Remnant
1006	I	-10	Chinese/Arabs	SN1006
1054	П	-5	China/Japan	Crab Nebula
1181	П	-1	China/Japan	3C58
1572	I.	-4	Tycho Brahe	Tycho
1604	I.	-3	Kepler	Kepler
ca. 1680	П	5 ?	Flamsteed	Cas A
1987		+2.9	lan Shelton	SN1987A

February 23, 1987
The brightest supernova since SN1604 (Kepler)

Two Fundamentally Different Kinds of Supernovae

Thermonuclear (Type Ia)

Core Collapse (Type II)

- Spectrum: no Hydrogen
- Explosion of white dwarf star in binary system
- Energy: fusion of $C + O \rightarrow Ni$
- Blows apart completely
- Maximum luminosity ~ 10⁹ Suns
- Occurs in Milky Way ~ 1/(100 years)

- Spectrum: Hydrogen
- Collapse of core of massive star (7 – 30 M_{Sun})
- Energy: gravity
- Forms neutron star
- Maximum luminosity ~ 10⁹ Suns
- Occurs in Milky Way ~ 1/(100 years)

Thermonuclear Supernovae

Thermonuclear Supernovae: Light Curves

•All have similar shapes.

•Luminous ones decay more slowly.

- •Allowing for this correlation, light curves of all thermonuclear supernovae are nearly identical.
- Thermonuclear supernovae are excellent "standard candles" for measuring cosmic expansion

Thermonuclear Supernova: Type Ia Spectrum

•No hydrogen lines

Sill, Call, OI, Fe absorption lines
Spectra of all thermonuclear supernovae are very similar

Thermonuclear Supernovae: Physical Model

- Progenitor star: C, O, white dwarf (WD) star
- Mass: ~ 1.4 M_{Sun}
- Triggered by mass transfer from nearby companion (He) star
- Thermonuclear explosion (T ~ 10^9 K): 12 C, 16 O \rightarrow 56 Ni
- WD star blows apart completely

1-zone model for thermonuclear supernovae

- The simplest possible physical model
- Neglect all radial structure (use average values)
- Estimates light curve correctly within factor 3.

Thermonuclear Energy

 $M(^{16}O)/16 - M(^{56}Ni)/56 = 0.5 \times 10^{-3}$ Energy release = 0.5 x 10⁻³ x 1.4 M_{Sun}c² = 10⁵¹ ergs

Explosion Debris

Expansion Velocity: $1/2 E_0 = 1/2 MV^2$: $E_0 = 10^{51} \text{ ergs}, M = 1.25 M_{Sun} \Rightarrow V \sim 5000 \text{ km/s}$ $R = R_0 + Vt = 10^8 \text{ cm} + 4 \times 10^{13} \text{ cm} [t/(1 \text{ day})]$

Interior radiation temperature: $\frac{1}{2}E_0 = aT_0^4 4\pi R_0^3/3 + 3/2M/m_H kT \Rightarrow T_0 = 2 \times 10^9 K$

Expansion cooling: $p_{rad} \sim \rho^{4/3} \Rightarrow T_{rad} \sim R^{-1}$. $\Rightarrow T_{rad} \sim 5000 \text{ K [t/(1 day)]}^{-1}$

Conclusion: Supernova will be invisible optically after 3 days, without an additional source of energy

So, why can we see supernovae? Answer: radioactive heating

⁵⁶Ni → ⁵⁶Co + e⁺ $t_{Ni} = 8.8 \text{ days},$ $\Delta E = 1.75 \text{ MeV}$ $\Rightarrow E_{Ni} = 0.75 \times 10^{50} \text{ ergs}$ $M_*/(1.4 M_{Sun})$

 $dE/dt = -E_0/t + E_{Ni}/t_{Ni} \exp(-t/t_{Ni}) + E_{Co}/t_{Co} \exp(-t/t_{Co})$

Diffusion of radiation

Optical depth: $\tau = n_e R_* \sigma_T$ $n_e = \frac{1}{2} M_* / (\frac{4}{3} \pi R_*^3 m_H);$ $\sigma_T = 6.6 \times 10^{-25} \text{ cm}^2$ $\Rightarrow \tau = 8 \times 10^4 M_* / (1.4 M_{Sun}) [t/(1 \text{ day})]^{-2}$ \Rightarrow Supernova is initially very opaque

Radiation path length: L = $R_*^2/\delta = R_*\tau$ $\delta = (n_e \sigma_T)^{-1}$ (mean free path)

Diffusion time: $t_{rad} = L/c = 1.2 \times 10^3 [t/(1 \text{ day})]^{-1} \text{ days}$

Unsolved Problems of Thermonuclear Supernovae

- What triggers the explosion?
- What causes the variation in the maximum luminosity? (Mass? C/O ratio?, opacity?)
- How do we account for the relationship between maximum luminosity and decay time?

Core Collapse (Type II) Supernovae (also Types Ib, Ic)

Compared to thermonuclear (Type Ia) supernovae), light curves of core collapse supernovae:

- Have much greater diversity
- Have lower maximum luminosity

Spectra

Type I: no hydrogen lines

Type II: hydrogen lines

Core Collapse Supernova Progenitor Star

Core Collapse Supernova Energy Sources

- Core collapse: E ~ GM²/R ~ 0.1 Mc² ~ 10⁵³ ergs Neutrinos: t ~ 10s
- Radioactivity: $0.07 M_{\odot}[{}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe] \sim 10^{49} \text{ ergs.}$ Light: t ~ 3 months
- Kinetic energy:
 - ~ 10 M_{\odot} , $V_{expansion}$ ~ 3000 km/s ~ 10⁵¹ ergs
 - ~ 1% core collapse.
 - X-rays: t ~ centuries.

Core collapse simulation

Supernova Nucleosynthesis

Pre-supernova stellar burning:

 $\begin{array}{lll} H \rightarrow He: & T = 2 \times 10^7 \ K \\ He \rightarrow C, \, O: & T = 10^8 \ K & (thermonuclear progenitor) \\ O \rightarrow Mg, \, Si: & T = 6 \times 10^8 \ K \\ Si \rightarrow Fe: & T = 10^9 \ K \ (core \ collapse \ progenitor) \end{array}$

Supernova burning $(T = 3 \times 10^9 \text{ K})$:

Thermonuclear SN: C, $O \rightarrow Si \rightarrow He \rightarrow Ni$ ("alpha process")

Si to Fe

Core collapse SN: Si \rightarrow Ni, and (for $\rho > 10^8$ g cm⁻³): (A,Z) + e \rightarrow (A, Z-1) \rightarrow (A-1, Z-1) + n ("neutron drip") Si, Ni + n \rightarrow all heavier elements ("r, s processes") \Rightarrow typical cosmic abundance ratios

Element abundances from supernova nucleosynthesis

Unsolved Problems of Core Collapse Supernovae

- Why is explosion energy about 10⁻² of collapse energy?
- How do they explode? (Rotation? Magnetic field?)
- Relationship to gamma ray burst sources?