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Abstract—Record linkage is the problem of identifying similar 
records across different data sources. The similarity between 
two records is defined based on domain-specific similarity 
functions over several attributes. In this paper,  a novel 
approach is proposed that uses a two level matching based on 
double embedding. First, records are embedded into a metric 
space of dimension K, then they are embedded into a smaller 
dimension K�. The first matching phase operates on the K�-
vectors, performing a quick-and-dirty comparison, pruning a 
large number of true negatives while ensuring a high recall. 
Then a more accurate matching phase is performed on the 
matching pairs in the K-dimension. Experiments have been 
conducted on real data sets and results revealed a gain in time 
performance ranging from 30% to 60% while achieving the 
same level of recall and accuracy as in previous single 
embedding schemes.  

Keywords- data cleaning; similarity matching; record 
linkage; embedding schemes   

I.  INTRODUCTION  

The record linkage problem is to find similar records, 
across different data sources, that refers to the same real 
world entity, e.g. patient, customer or author. When record 
linkage is performed within the same source, the problem is 
referred to as duplicate detection. The record linkage arises 
in the context of data cleaning that usually precedes data 
analysis and mining. It is important when integrating two 
data sources into one and in improving the quality of data by 
comparing to more accurate sources. The major challenges in 
record linkage are reducing computational complexity while 
maintaining high recall and accuracy. Several techniques 
have been proposed in the literature, see [7, 16] for recent 
surveys.  

A naïve approach for discovering matching records in 
two sources is to perform a nested-loop comparing each 
record in one source to all records in the second source. 
However, O(N2) comparisons is computationally infeasible, 
especially for large datasets. Further, performing an 
approximate matching between two records requires the 
computation of distance functions among textual attributes, 
which is an expensive factor in the cost.  

Several techniques have been introduced to reduce the 
quadratic number of comparisons that are based on a two 
phase approach. Blocking [1, 2] use record attributes, or 
subsets of attributes as a blocking key (e.g. first 4 characters 
of the surname)  to split the data into blocks, then a detailed 
comparison is carried out only between records that fall into 
the same block. Although blocking increase the speed of 
comparison, it can lead to an increased number of false 

negatives due to selection of a blocking step that places 
entries in the wrong blocks. Multiple runs using different 
blocking fields are performed to improve effectiveness. 
Sorted neighborhood [10], or merge/purge approach, relies 
on sorting records based on a sorting key, then moving a 
window of fixed size w sequentially where only records 
within w are paired with each other. This approach relies on 
the assumption that duplicate records will be close in the 
sorted list. Also, its effectiveness is dependent upon the 
comparison key. Similar to blocking, it has shown to be 
more effective with  multi-passes, which causes an increase 
in the runtime. McCallum et al [18] proposed a cheap 
comparison metric to group records into overlapping clusters 
called canopies, then records within the same cluster are 
accurately compared.  A recent work [21] exploited the 
semantic ambiguity of the data sources, using social network 
analysis, and applied relaxed matchers to less ambiguous 
data. 

Reducing the complexity of record comparisons has been 
addressed by techniques such as feature subset selection 
algorithms [23]. Recent approaches [15, 20] have used 
embedding textual attributes into Euclidean space while 
preserving the distances between the record values and 
performed the comparison in the metric space which is much 
cheaper than string comparison. In [20] SparseMap was used 
to map strings in a private environment to Euclidean space 
then used multidimensional index based on KDTree to 
perform the comparison. Jin et al [15] used FastMap for 
converting strings then applied a similarity-join algorithm 
based on R-tree to compare the metric vectors.  

This paper proposes a novel two-level matching scheme 
that exploits the advances developed in mapping records into 
a multidimensional Euclidean space while preserving the 
distances between the record values. It relies on a quick-and-
dirty matching process that is employed first, to prune a large 
number of mismatches and produces a smaller set of pairs of 
records that are used as input to a more expensive matching 
process. Datasets are first embedded into a metric space of 
dimension K, which captures an accurate representation of 
the data. It is followed by a second embedding that converts 
vectors from K dimension to vectors of smaller dimension 
K�. The quick-and-dirty matching phase is performed on the 
output of the second embedding, with the goal of discarding 
a large number of true negatives while ensuring that the 
resulting potential matching pairs includes all true positives 
and zero false negatives, yet achieving this with a small cost. 
The returned results are ingested to the second level of 
matching, which applies a similarity function on the potential 
pairs, but in their K-dimension representation. The second 



level matching is more expensive, but more accurate, and its 
goal is to refine the results of the first level by excluding 
false positives and any true negatives that have not been 
pruned in the first phase. With K�<K, the first level matching 
process is much cheaper than having the similarity function 
applied on all pairs in their K-representation. The expensive 
matching is performed only on the pairs detected in the first 
phase, which are much less, and cause an overall gain in time 
performance while achieving a high recall and accuracy. 

Recently, a similar approach has been proposed in [27] in 
the context of private record linkage. They assumed the data 
already embedded in the metric space, which is then 
represented as a point in the complex plane where a relaxed 
matching is performed, detecting pairs likely matching. Then 
a more accurate matching phase is performed on the likely 
matching pairs only. The second embedding though is bound 
to the complex plane where K�=2, and is not contractive. In 
this paper, the second embedding is generalized and a proper 
K� is chosen according to the nature of the data and its size. It 
has been shown that as the data size increases, higher values 
of K� results in higher performance gains.  

By selecting a proper embedding scheme in each phase, 
preserving the distances between the record values while 
guaranteeing contractiveness, it is ensured that results 
obtained are with a high recall and accuracy. The proposed 
matching scheme based on double embedding has been 
implemented and a set of experiments have been conducted 
on real data sets and compared with a scheme using a single 
embedding. Results showed that improvement in time 
performance ranging from 30% to 60% is achieved while 
maintaining the same level of recall and accuracy.  

The remainder of the paper is organized as follows. A 
formal definition of the problem is presented in Section II. In 
Section III, we describe a single embedding matching 
scheme that is similar to previous schemes proposed and will 
be used for comparison. In section IV, the steps of the 
matching scheme based on double embedding are presented. 
In section V, the experiments conducted to evaluate the 
performance of the protocol are presented and results are 
discussed. Finally, Section VI concludes the paper.  

II. PROBLEM FORMULATION 

The process of identifying similar record pairs consists of 
building a classifier that takes as input a set of thresholds and 
accurately classifies pairs of records as match or mismatch 
according to a predefined matching rule. Without loss of 
generality, it is assumed that the input datasets R and S  are 
represented as relations, and the schema of the two relations 
is the same R(a1, a2,..an) and S(a1, a2,..an).  

Given a distance function di: Dom(R.ai) x Dom(S.ai)��+ 
defined over domains of corresponding attribute of R and S, 
and matching thresholds �i�0, record linkage can be 
expressed as a join operator over R and S. A record pair (r,s) 
where r�R and s�S, is a matching pair if di(r.ai, s.ai) � �i for 
all attributes 1 � i < n. Then the join condition can be defined 
based on the following matching rule that returns true for 
matching record pairs and false for mismatching record pairs 

� ���� �	 
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������������������������������������������������������������������ 

The presented definition for the matching function is used 
by most of the record linkage approaches. The distance 
function di defines the similarity metric at the attribute level 
and is domain specific. In the domain of strings, there are a 
variety of metrics including the Edit distance, Smith-
Waterman distance, Jaro distance, q-gram and others (refer 
to [5, 7] for a survey). In this work, the Edit distance a.k.a. 
Levenshtein distance, a common measure of textual 
similarity, is used although any other metric could be used. 
Formally, given two strings s1 and s2, their edit distance is 
the minimum number of insertion, deletions and replace 
operations of single characters that are needed to transform 
s1 to s2. For instance, the edit distance between Johnson and 
Jonsan is 2, as Johnson is obtained by adding h and replacing 
a by o. In the metric domain, the most common metric 
distance function used is the Minkowski metrics based on the 
Lp norms, ||x||p = (�|xi|

p)1/p, with p�1. In this work, the 
Euclidean distance dE (p=2),  is used as the distance metric in 
the embedded space, although any other metric can be used. 

III. SINGLE EMBEDDING SCHEME 
In this section we describe the Single Embedding 

Scheme, which consists of two steps. In the first step, strings 
are mapped to objects in a multidimensional Euclidean 
space, such that the mapped space preserves the original 
string distance. In the second step, a multidimensional 
similarity join is performed in the Euclidean space.  This 
approach is similar to previous work such as [15, 20] and 
will be used for comparison. Several methods have been 
proposed to embed a set of objects in a metric space, 
including FastMap[8], SparseMap[13], MetricMap[25] and 
others (see [12] for a survey). Among those methods, 
SparseMap has been chosen because it has proven to be 
contractive when the original space is strings [12]. 
Contractiveness ensures that distances in the embedded 
space are a lower bound for distances in the original space, 
thus improving the quality of the embedding in terms of 
recall. In the following, the concept of the SparseMap 
technique is introduced and a description of  how it is used to 
embed strings into Euclidean space follows. Next, the 
technique used to perform the similarity join to complete the 
matching process is described.  

A. Embedding Strings to K-dimension Euclidean Space 
SparseMap is an embedding method based on a class of 

embedding known as Lipschitz embedding [3]. Therefore, 
we first describe Lipschitz embedding followed by the 
heuristics introduced by SparseMap.  

Lipschitz embedding defines a coordinate space where 
each axis corresponds to a reference set, drawn from the set 
of objects to be embedded. Given a set of objects O and a 
distance D in the original space, the embedding is defined in 
terms of a set S of subsets of O, S={S1, S2,..Sk} where Si is a 
reference set. Given an object o�O, the mapping F is defined 
as F(o)=(D(o,S1),…,D(o,Sk)), where D(o,Si)=minx�Si{D(o,x)}. 
That is, the coordinate values of object o are the distances 
from o to the closest element in each set Si. The method is 
based on the triangle inequality and exploits the fact that if 
|d(o1,x)-d(o2,x)| � d(o1,o2), then the property can be extended 



to subset Si and the value |d(o1,Si)-d(o2,Si)| is a lower bound 
on d(o1,o2). By using a set S of subsets, we increase the 
likelihood that the distance D(o1,o2) is captured adequately 
by the distance in the embedding space between F(o1) and 
F(o2) i.e. d(F(o1),F(o2)). 

Linial et al [17] have shown that when d, the metric 
distance function used to compare the embedded object, is 
one of the Minkowski metrics Lp, a bound can be established 
on d(F(o1),F(o2)), provided that k= log2N!2 and Si is of size 2j 
with j= (i-1)/log2N+1!. Given F(o)=(D(o,S1)/q,....,D(o,Sk)/q), 
where q=k1/p, it has been proved [17] that the embedding is 
contractive and the distortion, that is, the relative amount of 
deviation of the distance values in the embedding space with 
respect to the original distance, is guaranteed to be O(logN).  

Lipschitz embedding is rather impractical for two 
reasons. First, due to the number and sizes of the subsets in 
S, O(N2) distance computations is needed to embed an object 
o, as the distance between o and practically all objects need 
to be computed, which is exactly what we wish to avoid. 
Second, the number = log2N!2 of subsets, which is the 
number of coordinate values (dimensions) in the embedding 
is rather large. SparseMap  [13] introduces heuristics to 
overcome the above limitations. The Distance 
Approximation heuristic approximates the distance between 
object o and subset Si by computing "(o, Si), an upper bound 
on d(o,Si) by exploiting the partial vector that has been 
computed for each object.  

The algorithm for embedding strings into an Euclidean 
space of dimension K begins by combining the strings from 
the two datasets into one set O. It starts by building the 
reference sets S={S1, S2,..Sk}. As suggested in [13], each set 
Si is composed of any random strings of O of size 2j where 
j= (i-1)/ #K!+1!.  Thus, we get #K reference sets of size 2, 
#K of size 4, etc, up to size 2 #K!+1. Then it proceeds by 
computing the first coordinate for all objects, followed by the 
second coordinates, etc. The EmbedString algorithm is 
depicted in Figure 1. 

 
Algorithm: EmbedString(O, K) 
Input: O: a set of N strings 

     K: dimensionality of Euclidean space 
Output: SE[1,N][1,K] coordinates of the N strings 
 
// Build K reference sets S={S1, S2,..Sk}  
for i=1 to K  
   Si $ 2 (i-1)/ #K!+1!��strings randomly chosen from O 
for i=1 to K  
  �����oj���% 
        if (i==1) 
        // 1st coordinate: the distance is the minimum  
        // Edit distance between oj and every object in S1 

     "(oj, S1) = minx�S1{D(oj ,x)} 
       else { 
       // Get Euclidean distance between the (i-1) coordinates 
       // of oj and all objects in Si  

    Compute dE(Fi-1(oj), Fi-1(ot))  �ot � Si 
    Sort dE(Fi-1(oj), Fi-1(ot)) � ot�� Si ascendingly 
    Select the first � objects and place them in set � 
    Compute D(oj,ot) for all ot � � 
    Select or  s.t. D(oj,or) = minot � � {D(oj,ot)} 
    "(oj, Si) = D(oj,or) 
} 

     SE[j,i]  = "(oj, Si) 
Figure 1: Pseudo code of EmbedString embedding strings to Euclidean space  

A drawback of the distance approximation heuristic is 
that it renders the mapping non-contractive. In this paper,  
the heuristic proposed by [12] is used in order to make 
SparseMap contractive. The heuristic suggests that, instead 
of computing the actual distance D(oj,ot) for only a fixed 
number of objects �, it does so for a variable number of 
objects in Si. In particular, it first computes the approximate 
distances dE(Fi-1(oj),Fi-1(ot)) for all ot�Si which are lower 
bounds on the actual distance value D(oj,ot). Next, it 
computes the actual distance value of the object ot�Si in 
increasing order of their lower bound distances dE(Fi-1(oj), Fi-

1(ot)). Let or�Si be the object whose actual distance value 
D(oj,or) is the smallest distance value so far. Once D(oj,or) is 
smaller than all distances dE(Fi-1(oj),Fi-1(ot)) of all remaining 
elements in Si, then d(oj,Si) = D(oj,or). Although this heuristic 
increases the number of distance computations, it was 
decided to adopt it in order to make the embedding 
contractive.  

B. Similarity Join in Euclidean Space 
After the two datasets have been mapped into the metric 

space, it is required to find pairs of objects whose distance in 
the Euclidean space is within a threshold �. Many similarity-
join algorithms can be applied [11, 14] and usually they 
employ a form of  multidimensional index [9]. In this work, 
the KDTree index[9] has been used as it is considered one of 
the most prominent data structure for indexing 
multidimensional spaces and is designed for efficient nearest 
neighbor search [22].  

KDTree is a binary tree in which every node is a k-
dimensional point. Every internal node generates a splitting 
hyperplane that divides the space into subspaces. Points left 
to the hyperplane represent the left subtree of that node and 
the points right to the hyperplane represents the right subtree. 
The hyperplanes are iso-oriented and their direction 
alternates among the k possibilities. Building a KDTree is a 
O(NlogN) operation. 

The nearest neighbor algorithm (NN) aims to find the 
node in the tree which is nearest to a given input vector. This 
search can be done efficiently (O(logN) by using the tree 
properties to quickly eliminate large portions of the search 
space. The search starts with the root node and moves down 
the tree recursively until it reaches a leaf and saves that node 
point as the nearest. The algorithm unwinds the recursion of 
the tree; if the current node is closer than the nearest, then it 
becomes the nearest. The algorithm checks whether there 
could be any points on the other side of the splitting plane 
that are closer to the search point than the nearest. This is 
done by intersecting the splitting hyperplane with a 
hypersphere around the search node that has a radius equal to 
the current nearest distance. If the sphere crosses the plane, 
there could be nearer points on the other side of the plane, so 
the algorithm must move down the other branch of the tree 
from the current node looking for closer points, following the 
same recursive process as the entire search. If the 
hypersphere does not intersect the splitting plane, then the 
algorithm continues walking up the tree, and the entire 
branch on the other side of that node is eliminated.  



A variation of the NN algorithm [19] has been adopted 
that allows performing range searching. That is, given � and 
a vector v, it is required to retrieve all nodes that are within 
distance � from v. The variation is mainly that the initial 
distance is not reduced as closer points are discovered and all 
discovered points within � are returned, not just the nearest.  

The variation of the NN algorithm is applied in order to 
compare the vectors representing the two datasets  SE1 and 
SE2; the used distance metric is the Euclidean distance. 
Specifically, the KDTree for one of the datasets is built, say 
SE1. Then, for every vector in SE2 the NN range search 
algorithm is applied to retrieve the nodes in SE1 that are 
within distance �. 

IV. DOUBLE EMBEDDING SCHEME 

This section introduces the Double Embedding Scheme, 
which consists of four steps. The first step, combines the 
strings from the two datasets into one set O and maps them 
into Euclidean space of dimension K using the EmbedString 
algorithm presented in Section III.A. The second step 
involves mapping the embedded strings into a more 
compressed representation in the Euclidean space in 
dimension K�, where K&<K. In this step, the FastMap 
embedding technique has been selected, because of its 
simplicity, efficiency and contractiveness. The third step 
performs the similarity join between the two sets in the K� 
dimensional space using the KDTree as described in Section 
III.B. The fourth and last step, takes its input as the potential 
matched pairs produced from the similarity join and 
compares the Euclidean distance of the corresponding 
objects in the K dimension space. 

In the following, the technique used in embedding the 
datasets in K& dimension using FastMap is described, then 
the overall matching protocol is presented. 

A. Embedding K-dimension objects into K�-dimension 
FastMap[8] is a general embedding technique that is 

inspired by dimensionality reduction methods for Euclidean 
space based on linear transformation. Objects are mapped 
into points in K� dimensional space, where the coordinate 
values corresponding to these points are obtained by 
projecting them on K� mutually orthogonal directions, 
thereby forming the coordinate axes of the space in which 
the points are embedded. The projections are computed using 
the original distance function D. In our case, where the 
original space is K-dimension Euclidean space D= dE

K. The 
coordinate axes are constructed one by one, where at each 
iteration, two objects (referred to as pivot objects) are 
chosen, a line is drawn between them that serves as the 
coordinate axis, and the coordinate value along this axis for 
each object o is determined by projecting o into this line.  

For setting the K�-coordinate axis,  pivot objects are 
chosen at each step to anchor the line that form the newly 
formed axis. To extract more distance information, FastMap 
attempts to identify a pair of pivot objects that are far away 
from each other. In order to avoid O(N2) distance 
computations to determine the farthest pair of objects, a 
heuristic is proposed in [8] for computing an approximation 
of the farthest pair of objects. This heuristic first arbitrary 

chooses one of the objects t. Next, it finds the object r which 
is farthest from t. Finally, it finds the object s which is 
farthest from r. The last step can be iterated a number of m 
times in order to obtain a better estimate. Although [8] 
indicated that setting m=5 provides good estimates, [13] has 
shown that negligible improvements are achieved for m>2.  

Deriving the first coordinate for the N objects is obtained 
by projecting each object a on a line between pivots p1 and p2 
xa=[D(p1,a)2+D(p1,p2)

2 – D(p2,a)2]/2D(p1,p2). To derive the ith 
coordinate, the (i-1)-dimensional hyperplane H, which is 
perpendicular to the line that forms the previous coordinate 
axis, is determined and all objects are projected onto H. The 
projection is performed by defining a new distance dH that 
measures the distance between the projections of the objects 
on H. Let x0

i be the ith coordinate for object o, Fi(o) = {x0
1, 

x0
2,…,x0

i} be the first i coordinate value for F(o), di be the 
distance function used in the ith iteration, and p1

i and p2
i be 

the two pivots chosen at iteration i, then  
x0

i = [di(p1
i,o)2+ di (p1

i, p2
i)2 – di (p2

i,o)2]/2 di (p1
i, p2

i) 
The algorithm of embedding objects from the metric 

space of dimension K into dimension K� using FastMap  is 
described in Figure 2. 
Algorithm EmbedNum(SE, K�)  
Input: SE[1,N][1,K]:  coordinates of the N strings 
           K�: dimensionality of Euclidean space 
Output: DE[1,N][1,K�] coordinates of the N strings in K� dimension 
 
for (h=1 to K�) { 
  (p1,p2) = ChoosePivot(h); 
  v = FastAproxDist(p1, p2, h); 
  if (v==0)       // all inter-objects distances are zero 
    DE[i][h] =0  � i=1 to N 
  else              // compute coordinate on this axis h 
      for (i=1 to N) { 
         x = FastAproxDist (i, p1, h); 
         y = FastAproxDist (i, p2, h); 
         DE[i][h]= (x2 + v2 – y2)/ 2*v; 
      } 
} 

Figure 2(a): Algorithm EmbedNum mapping numbers into K� 
 
FastAproxDist (a, b, h) { 
   v = dE

K (SE[a],SE[b]); 
   for (i=1 to h-1) { 
      w = DE[a][i] – DE[b][i]; 
      v = |v2-w2|1/2; 
   }   
   return v; 
} 
ChoosePivot(h) { 
   // choose two pivots from objects represented in SE  on the hth -dimension 
   select an object and set it to be the second pivot b 
   for (i=1 to m) { 
      // FastAproxDist() is used to get distance between a and b 

 Set a = farthest object from b;  Let pa be index of a in SE 
 Set b= farthest object from a;   Let pb be index of b in SE 

   } 
   return(pa , pb);  
} 

Figure 2(b): Methods used with EmbedNum algorithm 
 
In the method FastApproxDist(), since the distance v can 

be negative, the heuristic developed by [26] has been 
adopted, namely using the square root of the absolute value 
of (v2-w2). FastMap has the advantage of being simple and 
efficient as its cost is linear;  it needs O(2+2m)K�N distance 



computations. It should be noticed that FastMap has not been 
chosen as the embedding technique in the first step because it 
has been proven in [12] that FastMap is not contractive when 
the original object space is not the Euclidean space.  

B. Overall Matching Scheme 
In this section, the pseudo-code of the overall matching 

scheme is illustrated. It starts by combining the strings from 
the two source datasets into one set O and maps them into 
Euclidean space of dimension K using the EmbedString 
algorithm, generating a  global matrix SE[N1+N2][K] 
containing the K-coordinates of all strings. SE is then split to 
SE1[N1][K] and SE2[N2][K] representing each dataset to be 
matched. This is followed by embedding the K-dimensional 
vector of each record in a more compressed representation in 
K�-dimension generating DE1[N1][K�] and DE2[N2][K�] for 
each source. Next, objects in their K�-representation are 
compared and returns the set P� including those pairs whose 
Euclidean distance is within a threshold ��, using the 
similarity join algorithm described in Section III.B. The set 
of matching pairs P� has been pruned such that most true 
negatives have been discarded. Further, it is ensured that all 
true positives are included with no false negatives, since the 
embedding used is contractive. Finally, all pairs in P� are 
compared in K dimension, and those pairs whose Euclidean 
distance is within threshold � are extracted. The scheme is 
presented in Figure 3. It is worth mentioning that one 
advantage of the presented scheme is that it is open to many 
embedding schemes, as long as they are contractive, and any 
multidimensional similarity join algorithms. Also, it does not 
depend on  specific similarity functions, whether in the string 
domain or the Euclidean space. 

The values of the embedding parameters K and K� and 
the similarity thresholds � and �� affects the performance, 
which will  be explored by experimental evaluation in 
Section V. A heuristic for selecting the parameters based on 
samples from the datasets is proposed and its application is 
validated against the experimental results and showed to be 
very effective. The heuristic and its application will be 
presented in an extended version of this paper.  
 
Algorithm: DoubleEmbedding(Set1, Set2, K, �, K�, �� ) 
Input: Set1, Set2: two datasets of Strings of size N1 and N2 
           K, K�: dimension of first and second embedding 
           �, �� : threshold of first and second embedding 
Output: P: set of matching pairs 
 
Combine Set1 and Set2 into one set O 
Embed O using EmbedString(O, K) and get SE1[N1][K], SE2[N2][K] 
Embed SE using EmbedNum(SE,K�) and get DE1[N1][K�] and DE2[N2][K�]  
// perform similarity join between DE1 and DE2 

Build the KDtree T for DE1 
Set P& = {}; 
for i=1 to N2 
  P& = P& U NNSearch(DE2[i], T, �� ) 
// compare the pairs in P& in K dimension 
Set P = {}; 
� pairs (pi,j) �  P& 
   if dE

K(SE1[i], SE2[j]) � � 
     P = P U (pi,j)     

Figure 3: Pseudo code of DoubleEmbedding Algorithm 

V. EXPERIMENTS 

In order to evaluate the potential benefits of the proposed 
solution,  a set of experiments has been conducted on real 
datasets with different sizes, with the following goals: 

• Tune the parameters of the Single Embedding Scheme 
(SES) while analyzing the quality of the embedding and 
evaluating the effectiveness of the resulting matching 
scheme. Several parameters, namely K and �, are varied 
experimentally and the distortion of the embedding and 
the effectiveness of the matching are measured. The 
goal is to reach a reasonable selection of K and � and 
validate them against previous published results. 

• Tune the parameters of the Double Embedding Scheme 
(DES) while analyzing the efficiency and effectiveness 
of the matching protocol in comparison with the SES. 

• Analyzing the efficiency of the DES while varying the 
size of the datasets, when compared to the SES. Also, 
the time performance is compared to record matching 
performed in the original string space. 

In the experiments, a real dataset has been used, 
representing British Columbia voters’ list containing 34,264 
records of voters’ names and addresses. This data is available 
at http://www.rootsweb.com/~canbc/vote1898. Only the first 
name and last name fields were used in the experiments. 
Removing all duplicates from the original set resulted in 
29,299 distinct records. From such dataset, two datasets are 
generated where we controlled and identified the percentage 
of similar records between each set pair. Three different sizes 
of datasets pairs were generated, namely with each set 
containing 4,000, 10,000 and 20,000 records respectively in 
order to evaluate the scalability of the proposed solution. 
Throughout the experiments the threshold � in the string 
space was set to 2.  

Efficiency is measured by the total execution time 
needed to perform the embedding, indexing and matching.  
Effectiveness of the scheme is analyzed in terms of: 

• Recall: the ratio of the number of matched records pairs 
generated by the matching protocol to the total number 
of true matched record pairs. This metric has been 
sometimes referred by others [4, 6, 15, 24] as pairs 
completeness.  

• Accuracy: the percentage of the correctly classified pairs 
[6, 24]. It is defined as the number of pairs correctly 
classified as matches or non-matches to the total number 
of pairs. This metric has been sometimes referred by 
others [1, 18, 20] as precision.  

The platform used for these experiments was a PC with 
an Intel dual-Core Duo processor 2.2 GHz and 3GB of 
memory. The protocol was implemented using Java and 
tested under Windows XP. In the implementation, the  
SecondString library [5] has been used for similarity 
matching and Levenshtein distance has been used. The 
library is available at http://secondstring.sourceforge.net/. 
For indexing the embedded space, the KDTree 
implementation available at http://www.cs.wlu.edu/~levy/kd 
has been used. The Java source was modified in order to 
implement the nearest neighbor using range search as 
described in Section III.B. 



A. Selection of Parameters for First Embedding 
 The selection of a small dimension K would result in a 

miss representation of the data, hence distance would not be 
preserved and similar pairs and dissimilar pairs will not be 
distinguished. However, setting K to a high value results in 
high cost, both for embedding and matching, and we risk the 
curse of dimensionality. For the selection of K, samples of 
4000 records from the datasets have been embedded in 
different dimensions and the quality of the embedding is 
evaluated with respect to the stress [12], measuring the 
distortion of the embedding defined as 

stress = 
' �()*�+,	�*�+-	./0�+,�+-		-1,�1-

' 0�+,�+-	-1,�1-
 

Also, the recall and accuracy were recorded. Results 
when varying K for three dataset sizes (4K, 10K and 20K) 
are shown in Figure 4. As expected, increasing K results in 
lower stress values and higher recall and accuracy. Results 
revealed that with K set to 25 and higher, very small 
variation in the stress is obtained and very small 
improvement in the recall and accuracy are reached. 
Therefore, in the remaining of the experiments, K is set to 
25. These results are similar to the results obtained by  [13] 
and [20].  
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Figure 4: Stress, recall and accuracy of first embedding, varying K 
 
Another important parameter that affects the performance 

and the effectiveness of the matching protocol is the 
threshold �. We ran a set of experiments on the full datasets 
4K, 10K and 20K while varying � from 0.1 to 2. It should be 
noticed that there is no need to set � higher than 2 since the 
mapping used is contractive. Since we knew which records 
were the true matches, therefore we could compute the recall 
and accuracy. Results are shown in Figure 5.  

As expected, increasing � results in improving the recall 
(Fig 5(a)) as large value of � ensures that all true matches are 
included in the results returned from the matching protocol, 
at the cost of an increase in the matching time. The recall 
reaches good values close to 1 for � larger than 1.6. At �=1.8 
the recall reaches 100% for all the three data sets. However, 
increasing � results in a decrease in the accuracy as larger 
values of � results in more false positives returned. However, 
it is noticed from Figure 5(b) that the decrease in accuracy is 
very small, ranging from 0.5% to 0.6% at �=1.8. On the basis 
of these experiments, the chosen embedding parameters were 
for K to be set to 25 and for � to be set at 1.8.  
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           (a)                                                         (b) 

Figure 5: Recall and accuracy of first embedding, Varying � 

B. Selection of Parameters of Second Embedding 
In this section,  the effectiveness of the proposed Double 

Embedding Scheme (DES) is evaluated, measured in terms 
of the recall and accuracy as well as its efficiency measured 
in terms of the total execution time. The two parameters 
affecting the performance of the double embedding are K� 
and ��.  A set of experiments has been conducted varying K� 
from 2 to 10 and varying �� from 0.1 to 2 for each K�. Again, 
�� does not need to be larger than 2 since the FastMap 
algorithm used in the second mapping is contractive. The 
experiments are repeated for the three datasets in order to 
demonstrate the scalability of the protocol and to observe the 
effect of variation of the parameters K� and �� when the data 
size increases. 

Figure 6 shows the recall and accuracy for the 4K 
dataset, varying �� from 0.1 to 2 for different values of K�.  
The results of the Single Embedding Scheme (SES) are also 
shown for comparison,  with K=25 and �=1.8.  

As expected, increasing �� results in an increase in the 
recall as larger values of �� increases the number of true 
positives returned from the matching protocol. High recall 
values are reached for �� >1.4 for all K�. The primary reason 
is that the embedding used is contractive and provides a good 
distance/similarity preservation. The accuracy on the other 
hand decreases as �� increases, since more false positives are 
returned. However, it reaches the accuracy of SES for ��>1.4. 
The same results were obtained for the 10K and 20K 
datasets, not shown for space constraint. 
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Figure 6: effectiveness of DES for 4K dataset 
 
Figure 7(a) shows the execution time of DES while 

varying �� and K�. It is observed that the cost increases as ��  
increases. This is expected as while matching in the KDTree, 
less pruning is done as there are more nodes to be retrieved 
for larger ��. Also, this increase is due to the increase in the 
number of potential matching pairs generated from the first 
level matching. However, for all �� and K�, the cost of the 
DES is substantially lower than SES, resulting in a minimum 
of 30% improvement for all K�. The effect of the variation of 
K� on the cost is somehow complex since it consists of three 
components. The first component is the embedding time, 
which increases as K� increases. The second component is 
the cost of indexing, that is building the KDtree for one of 



the embedded sets, then applying the nearest neighbor 
algorithm using range search for the second set. This cost 
also increases with the increase of K�. The third component, 
is the final stage of matching, which consists of computing 
the Euclidean distance between the set of matching pairs 
resulting from indexing and searching the KDtree. This cost 
is dependent on the number of matching pairs returned, 
which decreases as K� increases. This decrease is attributed 
to a more accurate representation of the embedded records, 
hence more accurate matching pairs are obtained.  

Figure 7(b) shows the total execution time for �� larger 
than 1.4. It is plotted separately in order to show the effect of 
varying K� more closely. �� is chosen from 1.4 to 2.0 since 
this is the range �� will be chosen from to achieve a good 
recall.  It is observed that the cost of DES gives improvement 
for ��>1.4 ranging from 30% to 64% than SES for all values 
of K�. The lowest cost is achieved with K�=3, which achieves 
the best balance in the cost of the indexing versus the 
number of potential matching pairs. For K�=2, the cost is 
higher than K�=3 because the number of detected pairs in the 
first matching phase is much higher than for K�=3 (2.2m 
pairs versus 1.7m pairs for �� =1.5). Hence, the pair matching 
cost is higher, which increases for larger values of ��. For K�= 
4 and 5, the cost is quite similar. It is higher than that of K�=3 
because the increase in the indexing and matching cost 
(KDTree) is higher than the decrease in the matching pair 
cost.  They are higher than K�=2 for �� smaller than 1.5, then 
they outperform K�=2 since the increase in their indexing and 
matching cost is lower than its increase in the matching pair 
cost. When K� is set to 8 and 10 the cost gets higher as the 
indexing and matching cost increases. 
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Figure 7: Cost of DES for 4K dataset 
 

Running the same experiments on the 10K dataset 
revealed that although the improvement in the cost decreases 
as �� increases, it ranges from 30% to 60% for all K� for  
��>1.4. Figure 8(a) shows the cost for the 10K dataset for 
��>1.4 and Figure 8(b) shows the breakdown of the total cost 
for ��=1.5 for all K�. It is noticed that for ��=1.5, the total cost 
reaches its minimum at K�=4, where the increase in the 
embedding time and the KDTree is lower than the decrease 
in the pair matching time. From Figure 8(a),  it is observed 

that K�=4 and 5 yield the best balance between the three 
components. The cost of K�=2 and 3 is higher because the 
matching pair time is dominant. The cost of K�=8 and 10 are 
higher than all where the indexing and matching (KDTree) 
increase is more dominant. 
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Figure 8: cost of DES for 10K dataset 
 

Figure 9(a) shows the cost for the 20K dataset for ��>1.4. 
Figure 9(b) shows that for ��=1.5, the total cost reaches its 
minimum at K�=6, where the increase in the embedding time 
and the KDTree is lower than the decrease in the pair 
matching time. From Figure 9(a),  it is observed that K�=6 
yields the best balance between the three cost components, 
followed by K�=5, then K�=8. The cost of K�=2 and 3 
experience the highest cost, especially for �� larger than 1.4 
where the matching pair time is dominant. The cost of K�=10 
is high, specially for small value of ��, where the indexing 
and matching (KDTree) increase is more dominant. As �� 
increases, K� set to 10 shows lower cost than K� set to 4 or 
smaller, as the increase in the matching pair time is minimal 
compared to smaller K�. 
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Figure 9: Cost of DES for 20K dataset 
The above experiments show that the selection of K� 

affects the improvement of the cost, and is dependent on the 



size of the dataset. As the size of the dataset increases, larger 
values of K� yields lower cost. However, it is shown that for 
�� set to 1.5, the worst selection of K� would result in a 40% 
improvement, while an optimum selection can lead to 
improvement ranging from 50% to 60% over SES. 

C. Effect of Datasize Variation 
To evaluate the scalability of DES, its run time is 

compared with the run time of matching records in the 
original space, varying the datasets from 4K to 20K, shown 
in Figure 10(a). It is obvious that matching strings requires 
by far more time due to O(N2) string distance computations 
and the difference is more dramatic as the data size 
increases.  The scalability of the protocol is studied also in 
comparison with SES as shown in Figure 10(b). The 
parameters used for SES were K=25, �=1.8, and for DES �� 
=1.5 and K�=3 for N=4K, K�=4 for N<10K, K�=5 for N<16K 
and K�=6 for N<20K. The results show that DES outperforms 
SES, especially for large datasets, showing improvement 
ranging from 59% to 64%. 
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Figure 10: Cost of DES vs string matching and SES  

VI. CONCLUSIONS 

This paper introduced a novel scheme for record linkage 
based on double embedding of the data, aiming at improving 
the efficiency. A two level matching is proposed, with the 
first level performing a fast and inaccurate matching, 
ensuring high recall while the second level performs a more 
expensive matching, on a smaller set of pairs, to improve the 
accuracy.  Experimental evaluation on real datasets revealed 
that, by using contractive embedding techniques that 
preserve the distance between records values, the suggested 
scheme outperforms the single embedding scheme achieving 
gains in time performance ranging from 30% to 60%, while 
achieving the same level of recall and accuracy. Future work 
will address scenarios with more than two parties and 
different data types such as DNA sequence, etc.  
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