
Efficient Record Linkage using a Double Embedding Scheme

Noha Adly
Department of Computer and Systems Engineering

Faculty of Engineering, Alexandria University
Alexandria, 21544 Egypt
noha.adly@alex.edu.eg

Abstract—Record linkage is the problem of identifying similar
records across different data sources. The similarity between
two records is defined based on domain-specific similarity
functions over several attributes. In this paper, a novel
approach is proposed that uses a two level matching based on
double embedding. First, records are embedded into a metric
space of dimension K, then they are embedded into a smaller
dimension K�. The first matching phase operates on the K�-
vectors, performing a quick-and-dirty comparison, pruning a
large number of true negatives while ensuring a high recall.
Then a more accurate matching phase is performed on the
matching pairs in the K-dimension. Experiments have been
conducted on real data sets and results revealed a gain in time
performance ranging from 30% to 60% while achieving the
same level of recall and accuracy as in previous single
embedding schemes.

Keywords- data cleaning; similarity matching; record
linkage; embedding schemes

I. INTRODUCTION

The record linkage problem is to find similar records,
across different data sources, that refers to the same real
world entity, e.g. patient, customer or author. When record
linkage is performed within the same source, the problem is
referred to as duplicate detection. The record linkage arises
in the context of data cleaning that usually precedes data
analysis and mining. It is important when integrating two
data sources into one and in improving the quality of data by
comparing to more accurate sources. The major challenges in
record linkage are reducing computational complexity while
maintaining high recall and accuracy. Several techniques
have been proposed in the literature, see [7, 16] for recent
surveys.

A naïve approach for discovering matching records in
two sources is to perform a nested-loop comparing each
record in one source to all records in the second source.
However, O(N2) comparisons is computationally infeasible,
especially for large datasets. Further, performing an
approximate matching between two records requires the
computation of distance functions among textual attributes,
which is an expensive factor in the cost.

Several techniques have been introduced to reduce the
quadratic number of comparisons that are based on a two
phase approach. Blocking [1, 2] use record attributes, or
subsets of attributes as a blocking key (e.g. first 4 characters
of the surname) to split the data into blocks, then a detailed
comparison is carried out only between records that fall into
the same block. Although blocking increase the speed of
comparison, it can lead to an increased number of false

negatives due to selection of a blocking step that places
entries in the wrong blocks. Multiple runs using different
blocking fields are performed to improve effectiveness.
Sorted neighborhood [10], or merge/purge approach, relies
on sorting records based on a sorting key, then moving a
window of fixed size w sequentially where only records
within w are paired with each other. This approach relies on
the assumption that duplicate records will be close in the
sorted list. Also, its effectiveness is dependent upon the
comparison key. Similar to blocking, it has shown to be
more effective with multi-passes, which causes an increase
in the runtime. McCallum et al [18] proposed a cheap
comparison metric to group records into overlapping clusters
called canopies, then records within the same cluster are
accurately compared. A recent work [21] exploited the
semantic ambiguity of the data sources, using social network
analysis, and applied relaxed matchers to less ambiguous
data.

Reducing the complexity of record comparisons has been
addressed by techniques such as feature subset selection
algorithms [23]. Recent approaches [15, 20] have used
embedding textual attributes into Euclidean space while
preserving the distances between the record values and
performed the comparison in the metric space which is much
cheaper than string comparison. In [20] SparseMap was used
to map strings in a private environment to Euclidean space
then used multidimensional index based on KDTree to
perform the comparison. Jin et al [15] used FastMap for
converting strings then applied a similarity-join algorithm
based on R-tree to compare the metric vectors.

This paper proposes a novel two-level matching scheme
that exploits the advances developed in mapping records into
a multidimensional Euclidean space while preserving the
distances between the record values. It relies on a quick-and-
dirty matching process that is employed first, to prune a large
number of mismatches and produces a smaller set of pairs of
records that are used as input to a more expensive matching
process. Datasets are first embedded into a metric space of
dimension K, which captures an accurate representation of
the data. It is followed by a second embedding that converts
vectors from K dimension to vectors of smaller dimension
K�. The quick-and-dirty matching phase is performed on the
output of the second embedding, with the goal of discarding
a large number of true negatives while ensuring that the
resulting potential matching pairs includes all true positives
and zero false negatives, yet achieving this with a small cost.
The returned results are ingested to the second level of
matching, which applies a similarity function on the potential
pairs, but in their K-dimension representation. The second

level matching is more expensive, but more accurate, and its
goal is to refine the results of the first level by excluding
false positives and any true negatives that have not been
pruned in the first phase. With K�<K, the first level matching
process is much cheaper than having the similarity function
applied on all pairs in their K-representation. The expensive
matching is performed only on the pairs detected in the first
phase, which are much less, and cause an overall gain in time
performance while achieving a high recall and accuracy.

Recently, a similar approach has been proposed in [27] in
the context of private record linkage. They assumed the data
already embedded in the metric space, which is then
represented as a point in the complex plane where a relaxed
matching is performed, detecting pairs likely matching. Then
a more accurate matching phase is performed on the likely
matching pairs only. The second embedding though is bound
to the complex plane where K�=2, and is not contractive. In
this paper, the second embedding is generalized and a proper
K� is chosen according to the nature of the data and its size. It
has been shown that as the data size increases, higher values
of K� results in higher performance gains.

By selecting a proper embedding scheme in each phase,
preserving the distances between the record values while
guaranteeing contractiveness, it is ensured that results
obtained are with a high recall and accuracy. The proposed
matching scheme based on double embedding has been
implemented and a set of experiments have been conducted
on real data sets and compared with a scheme using a single
embedding. Results showed that improvement in time
performance ranging from 30% to 60% is achieved while
maintaining the same level of recall and accuracy.

The remainder of the paper is organized as follows. A
formal definition of the problem is presented in Section II. In
Section III, we describe a single embedding matching
scheme that is similar to previous schemes proposed and will
be used for comparison. In section IV, the steps of the
matching scheme based on double embedding are presented.
In section V, the experiments conducted to evaluate the
performance of the protocol are presented and results are
discussed. Finally, Section VI concludes the paper.

II. PROBLEM FORMULATION

The process of identifying similar record pairs consists of
building a classifier that takes as input a set of thresholds and
accurately classifies pairs of records as match or mismatch
according to a predefined matching rule. Without loss of
generality, it is assumed that the input datasets R and S are
represented as relations, and the schema of the two relations
is the same R(a1, a2,..an) and S(a1, a2,..an).

Given a distance function di: Dom(R.ai) x Dom(S.ai)��+
defined over domains of corresponding attribute of R and S,
and matching thresholds �i�0, record linkage can be
expressed as a join operator over R and S. A record pair (r,s)
where r�R and s�S, is a matching pair if di(r.ai, s.ai) � �i for
all attributes 1 � i < n. Then the join condition can be defined
based on the following matching rule that returns true for
matching record pairs and false for mismatching record pairs

� ���� �	
 ���
�������������� �� � �� ��	 � �� ������� � � � �
��

The presented definition for the matching function is used
by most of the record linkage approaches. The distance
function di defines the similarity metric at the attribute level
and is domain specific. In the domain of strings, there are a
variety of metrics including the Edit distance, Smith-
Waterman distance, Jaro distance, q-gram and others (refer
to [5, 7] for a survey). In this work, the Edit distance a.k.a.
Levenshtein distance, a common measure of textual
similarity, is used although any other metric could be used.
Formally, given two strings s1 and s2, their edit distance is
the minimum number of insertion, deletions and replace
operations of single characters that are needed to transform
s1 to s2. For instance, the edit distance between Johnson and
Jonsan is 2, as Johnson is obtained by adding h and replacing
a by o. In the metric domain, the most common metric
distance function used is the Minkowski metrics based on the
Lp norms, ||x||p = (�|xi|

p)1/p, with p�1. In this work, the
Euclidean distance dE (p=2), is used as the distance metric in
the embedded space, although any other metric can be used.

III. SINGLE EMBEDDING SCHEME
In this section we describe the Single Embedding

Scheme, which consists of two steps. In the first step, strings
are mapped to objects in a multidimensional Euclidean
space, such that the mapped space preserves the original
string distance. In the second step, a multidimensional
similarity join is performed in the Euclidean space. This
approach is similar to previous work such as [15, 20] and
will be used for comparison. Several methods have been
proposed to embed a set of objects in a metric space,
including FastMap[8], SparseMap[13], MetricMap[25] and
others (see [12] for a survey). Among those methods,
SparseMap has been chosen because it has proven to be
contractive when the original space is strings [12].
Contractiveness ensures that distances in the embedded
space are a lower bound for distances in the original space,
thus improving the quality of the embedding in terms of
recall. In the following, the concept of the SparseMap
technique is introduced and a description of how it is used to
embed strings into Euclidean space follows. Next, the
technique used to perform the similarity join to complete the
matching process is described.

A. Embedding Strings to K-dimension Euclidean Space
SparseMap is an embedding method based on a class of

embedding known as Lipschitz embedding [3]. Therefore,
we first describe Lipschitz embedding followed by the
heuristics introduced by SparseMap.

Lipschitz embedding defines a coordinate space where
each axis corresponds to a reference set, drawn from the set
of objects to be embedded. Given a set of objects O and a
distance D in the original space, the embedding is defined in
terms of a set S of subsets of O, S={S1, S2,..Sk} where Si is a
reference set. Given an object o�O, the mapping F is defined
as F(o)=(D(o,S1),…,D(o,Sk)), where D(o,Si)=minx�Si{D(o,x)}.
That is, the coordinate values of object o are the distances
from o to the closest element in each set Si. The method is
based on the triangle inequality and exploits the fact that if
|d(o1,x)-d(o2,x)| � d(o1,o2), then the property can be extended

to subset Si and the value |d(o1,Si)-d(o2,Si)| is a lower bound
on d(o1,o2). By using a set S of subsets, we increase the
likelihood that the distance D(o1,o2) is captured adequately
by the distance in the embedding space between F(o1) and
F(o2) i.e. d(F(o1),F(o2)).

Linial et al [17] have shown that when d, the metric
distance function used to compare the embedded object, is
one of the Minkowski metrics Lp, a bound can be established
on d(F(o1),F(o2)), provided that k= log2N!2 and Si is of size 2j
with j= (i-1)/log2N+1!. Given F(o)=(D(o,S1)/q,....,D(o,Sk)/q),
where q=k1/p, it has been proved [17] that the embedding is
contractive and the distortion, that is, the relative amount of
deviation of the distance values in the embedding space with
respect to the original distance, is guaranteed to be O(logN).

Lipschitz embedding is rather impractical for two
reasons. First, due to the number and sizes of the subsets in
S, O(N2) distance computations is needed to embed an object
o, as the distance between o and practically all objects need
to be computed, which is exactly what we wish to avoid.
Second, the number = log2N!2 of subsets, which is the
number of coordinate values (dimensions) in the embedding
is rather large. SparseMap [13] introduces heuristics to
overcome the above limitations. The Distance
Approximation heuristic approximates the distance between
object o and subset Si by computing "(o, Si), an upper bound
on d(o,Si) by exploiting the partial vector that has been
computed for each object.

The algorithm for embedding strings into an Euclidean
space of dimension K begins by combining the strings from
the two datasets into one set O. It starts by building the
reference sets S={S1, S2,..Sk}. As suggested in [13], each set
Si is composed of any random strings of O of size 2j where
j= (i-1)/ #K!+1!. Thus, we get #K reference sets of size 2,
#K of size 4, etc, up to size 2 #K!+1. Then it proceeds by
computing the first coordinate for all objects, followed by the
second coordinates, etc. The EmbedString algorithm is
depicted in Figure 1.

Algorithm: EmbedString(O, K)
Input: O: a set of N strings

 K: dimensionality of Euclidean space
Output: SE[1,N][1,K] coordinates of the N strings

// Build K reference sets S={S1, S2,..Sk}
for i=1 to K
 Si $ 2 (i-1)/ #K!+1!��strings randomly chosen from O
for i=1 to K
 �����oj���%
 if (i==1)
 // 1st coordinate: the distance is the minimum
 // Edit distance between oj and every object in S1

 "(oj, S1) = minx�S1{D(oj ,x)}
 else {
 // Get Euclidean distance between the (i-1) coordinates
 // of oj and all objects in Si

 Compute dE(Fi-1(oj), Fi-1(ot)) �ot � Si
 Sort dE(Fi-1(oj), Fi-1(ot)) � ot�� Si ascendingly
 Select the first � objects and place them in set �
 Compute D(oj,ot) for all ot � �
 Select or s.t. D(oj,or) = minot � � {D(oj,ot)}
 "(oj, Si) = D(oj,or)
}

 SE[j,i] = "(oj, Si)
Figure 1: Pseudo code of EmbedString embedding strings to Euclidean space

A drawback of the distance approximation heuristic is
that it renders the mapping non-contractive. In this paper,
the heuristic proposed by [12] is used in order to make
SparseMap contractive. The heuristic suggests that, instead
of computing the actual distance D(oj,ot) for only a fixed
number of objects �, it does so for a variable number of
objects in Si. In particular, it first computes the approximate
distances dE(Fi-1(oj),Fi-1(ot)) for all ot�Si which are lower
bounds on the actual distance value D(oj,ot). Next, it
computes the actual distance value of the object ot�Si in
increasing order of their lower bound distances dE(Fi-1(oj), Fi-

1(ot)). Let or�Si be the object whose actual distance value
D(oj,or) is the smallest distance value so far. Once D(oj,or) is
smaller than all distances dE(Fi-1(oj),Fi-1(ot)) of all remaining
elements in Si, then d(oj,Si) = D(oj,or). Although this heuristic
increases the number of distance computations, it was
decided to adopt it in order to make the embedding
contractive.

B. Similarity Join in Euclidean Space
After the two datasets have been mapped into the metric

space, it is required to find pairs of objects whose distance in
the Euclidean space is within a threshold �. Many similarity-
join algorithms can be applied [11, 14] and usually they
employ a form of multidimensional index [9]. In this work,
the KDTree index[9] has been used as it is considered one of
the most prominent data structure for indexing
multidimensional spaces and is designed for efficient nearest
neighbor search [22].

KDTree is a binary tree in which every node is a k-
dimensional point. Every internal node generates a splitting
hyperplane that divides the space into subspaces. Points left
to the hyperplane represent the left subtree of that node and
the points right to the hyperplane represents the right subtree.
The hyperplanes are iso-oriented and their direction
alternates among the k possibilities. Building a KDTree is a
O(NlogN) operation.

The nearest neighbor algorithm (NN) aims to find the
node in the tree which is nearest to a given input vector. This
search can be done efficiently (O(logN) by using the tree
properties to quickly eliminate large portions of the search
space. The search starts with the root node and moves down
the tree recursively until it reaches a leaf and saves that node
point as the nearest. The algorithm unwinds the recursion of
the tree; if the current node is closer than the nearest, then it
becomes the nearest. The algorithm checks whether there
could be any points on the other side of the splitting plane
that are closer to the search point than the nearest. This is
done by intersecting the splitting hyperplane with a
hypersphere around the search node that has a radius equal to
the current nearest distance. If the sphere crosses the plane,
there could be nearer points on the other side of the plane, so
the algorithm must move down the other branch of the tree
from the current node looking for closer points, following the
same recursive process as the entire search. If the
hypersphere does not intersect the splitting plane, then the
algorithm continues walking up the tree, and the entire
branch on the other side of that node is eliminated.

A variation of the NN algorithm [19] has been adopted
that allows performing range searching. That is, given � and
a vector v, it is required to retrieve all nodes that are within
distance � from v. The variation is mainly that the initial
distance is not reduced as closer points are discovered and all
discovered points within � are returned, not just the nearest.

The variation of the NN algorithm is applied in order to
compare the vectors representing the two datasets SE1 and
SE2; the used distance metric is the Euclidean distance.
Specifically, the KDTree for one of the datasets is built, say
SE1. Then, for every vector in SE2 the NN range search
algorithm is applied to retrieve the nodes in SE1 that are
within distance �.

IV. DOUBLE EMBEDDING SCHEME

This section introduces the Double Embedding Scheme,
which consists of four steps. The first step, combines the
strings from the two datasets into one set O and maps them
into Euclidean space of dimension K using the EmbedString
algorithm presented in Section III.A. The second step
involves mapping the embedded strings into a more
compressed representation in the Euclidean space in
dimension K�, where K&<K. In this step, the FastMap
embedding technique has been selected, because of its
simplicity, efficiency and contractiveness. The third step
performs the similarity join between the two sets in the K�
dimensional space using the KDTree as described in Section
III.B. The fourth and last step, takes its input as the potential
matched pairs produced from the similarity join and
compares the Euclidean distance of the corresponding
objects in the K dimension space.

In the following, the technique used in embedding the
datasets in K& dimension using FastMap is described, then
the overall matching protocol is presented.

A. Embedding K-dimension objects into K�-dimension
FastMap[8] is a general embedding technique that is

inspired by dimensionality reduction methods for Euclidean
space based on linear transformation. Objects are mapped
into points in K� dimensional space, where the coordinate
values corresponding to these points are obtained by
projecting them on K� mutually orthogonal directions,
thereby forming the coordinate axes of the space in which
the points are embedded. The projections are computed using
the original distance function D. In our case, where the
original space is K-dimension Euclidean space D= dE

K. The
coordinate axes are constructed one by one, where at each
iteration, two objects (referred to as pivot objects) are
chosen, a line is drawn between them that serves as the
coordinate axis, and the coordinate value along this axis for
each object o is determined by projecting o into this line.

For setting the K�-coordinate axis, pivot objects are
chosen at each step to anchor the line that form the newly
formed axis. To extract more distance information, FastMap
attempts to identify a pair of pivot objects that are far away
from each other. In order to avoid O(N2) distance
computations to determine the farthest pair of objects, a
heuristic is proposed in [8] for computing an approximation
of the farthest pair of objects. This heuristic first arbitrary

chooses one of the objects t. Next, it finds the object r which
is farthest from t. Finally, it finds the object s which is
farthest from r. The last step can be iterated a number of m
times in order to obtain a better estimate. Although [8]
indicated that setting m=5 provides good estimates, [13] has
shown that negligible improvements are achieved for m>2.

Deriving the first coordinate for the N objects is obtained
by projecting each object a on a line between pivots p1 and p2
xa=[D(p1,a)2+D(p1,p2)

2 – D(p2,a)2]/2D(p1,p2). To derive the ith
coordinate, the (i-1)-dimensional hyperplane H, which is
perpendicular to the line that forms the previous coordinate
axis, is determined and all objects are projected onto H. The
projection is performed by defining a new distance dH that
measures the distance between the projections of the objects
on H. Let x0

i be the ith coordinate for object o, Fi(o) = {x0
1,

x0
2,…,x0

i} be the first i coordinate value for F(o), di be the
distance function used in the ith iteration, and p1

i and p2
i be

the two pivots chosen at iteration i, then
x0

i = [di(p1
i,o)2+ di (p1

i, p2
i)2 – di (p2

i,o)2]/2 di (p1
i, p2

i)
The algorithm of embedding objects from the metric

space of dimension K into dimension K� using FastMap is
described in Figure 2.
Algorithm EmbedNum(SE, K�)
Input: SE[1,N][1,K]: coordinates of the N strings
 K�: dimensionality of Euclidean space
Output: DE[1,N][1,K�] coordinates of the N strings in K� dimension

for (h=1 to K�) {
 (p1,p2) = ChoosePivot(h);
 v = FastAproxDist(p1, p2, h);
 if (v==0) // all inter-objects distances are zero
 DE[i][h] =0 � i=1 to N
 else // compute coordinate on this axis h
 for (i=1 to N) {
 x = FastAproxDist (i, p1, h);
 y = FastAproxDist (i, p2, h);
 DE[i][h]= (x2 + v2 – y2)/ 2*v;
 }
}

Figure 2(a): Algorithm EmbedNum mapping numbers into K�

FastAproxDist (a, b, h) {
 v = dE

K (SE[a],SE[b]);
 for (i=1 to h-1) {
 w = DE[a][i] – DE[b][i];
 v = |v2-w2|1/2;
 }
 return v;
}
ChoosePivot(h) {
 // choose two pivots from objects represented in SE on the hth -dimension
 select an object and set it to be the second pivot b
 for (i=1 to m) {
 // FastAproxDist() is used to get distance between a and b

 Set a = farthest object from b; Let pa be index of a in SE
 Set b= farthest object from a; Let pb be index of b in SE

 }
 return(pa , pb);
}

Figure 2(b): Methods used with EmbedNum algorithm

In the method FastApproxDist(), since the distance v can

be negative, the heuristic developed by [26] has been
adopted, namely using the square root of the absolute value
of (v2-w2). FastMap has the advantage of being simple and
efficient as its cost is linear; it needs O(2+2m)K�N distance

computations. It should be noticed that FastMap has not been
chosen as the embedding technique in the first step because it
has been proven in [12] that FastMap is not contractive when
the original object space is not the Euclidean space.

B. Overall Matching Scheme
In this section, the pseudo-code of the overall matching

scheme is illustrated. It starts by combining the strings from
the two source datasets into one set O and maps them into
Euclidean space of dimension K using the EmbedString
algorithm, generating a global matrix SE[N1+N2][K]
containing the K-coordinates of all strings. SE is then split to
SE1[N1][K] and SE2[N2][K] representing each dataset to be
matched. This is followed by embedding the K-dimensional
vector of each record in a more compressed representation in
K�-dimension generating DE1[N1][K�] and DE2[N2][K�] for
each source. Next, objects in their K�-representation are
compared and returns the set P� including those pairs whose
Euclidean distance is within a threshold ��, using the
similarity join algorithm described in Section III.B. The set
of matching pairs P� has been pruned such that most true
negatives have been discarded. Further, it is ensured that all
true positives are included with no false negatives, since the
embedding used is contractive. Finally, all pairs in P� are
compared in K dimension, and those pairs whose Euclidean
distance is within threshold � are extracted. The scheme is
presented in Figure 3. It is worth mentioning that one
advantage of the presented scheme is that it is open to many
embedding schemes, as long as they are contractive, and any
multidimensional similarity join algorithms. Also, it does not
depend on specific similarity functions, whether in the string
domain or the Euclidean space.

The values of the embedding parameters K and K� and
the similarity thresholds � and �� affects the performance,
which will be explored by experimental evaluation in
Section V. A heuristic for selecting the parameters based on
samples from the datasets is proposed and its application is
validated against the experimental results and showed to be
very effective. The heuristic and its application will be
presented in an extended version of this paper.

Algorithm: DoubleEmbedding(Set1, Set2, K, �, K�, ��)
Input: Set1, Set2: two datasets of Strings of size N1 and N2
 K, K�: dimension of first and second embedding
 �, �� : threshold of first and second embedding
Output: P: set of matching pairs

Combine Set1 and Set2 into one set O
Embed O using EmbedString(O, K) and get SE1[N1][K], SE2[N2][K]
Embed SE using EmbedNum(SE,K�) and get DE1[N1][K�] and DE2[N2][K�]
// perform similarity join between DE1 and DE2

Build the KDtree T for DE1
Set P& = {};
for i=1 to N2
 P& = P& U NNSearch(DE2[i], T, ��)
// compare the pairs in P& in K dimension
Set P = {};
� pairs (pi,j) � P&
 if dE

K(SE1[i], SE2[j]) � �
 P = P U (pi,j)

Figure 3: Pseudo code of DoubleEmbedding Algorithm

V. EXPERIMENTS

In order to evaluate the potential benefits of the proposed
solution, a set of experiments has been conducted on real
datasets with different sizes, with the following goals:

• Tune the parameters of the Single Embedding Scheme
(SES) while analyzing the quality of the embedding and
evaluating the effectiveness of the resulting matching
scheme. Several parameters, namely K and �, are varied
experimentally and the distortion of the embedding and
the effectiveness of the matching are measured. The
goal is to reach a reasonable selection of K and � and
validate them against previous published results.

• Tune the parameters of the Double Embedding Scheme
(DES) while analyzing the efficiency and effectiveness
of the matching protocol in comparison with the SES.

• Analyzing the efficiency of the DES while varying the
size of the datasets, when compared to the SES. Also,
the time performance is compared to record matching
performed in the original string space.

In the experiments, a real dataset has been used,
representing British Columbia voters’ list containing 34,264
records of voters’ names and addresses. This data is available
at http://www.rootsweb.com/~canbc/vote1898. Only the first
name and last name fields were used in the experiments.
Removing all duplicates from the original set resulted in
29,299 distinct records. From such dataset, two datasets are
generated where we controlled and identified the percentage
of similar records between each set pair. Three different sizes
of datasets pairs were generated, namely with each set
containing 4,000, 10,000 and 20,000 records respectively in
order to evaluate the scalability of the proposed solution.
Throughout the experiments the threshold � in the string
space was set to 2.

Efficiency is measured by the total execution time
needed to perform the embedding, indexing and matching.
Effectiveness of the scheme is analyzed in terms of:

• Recall: the ratio of the number of matched records pairs
generated by the matching protocol to the total number
of true matched record pairs. This metric has been
sometimes referred by others [4, 6, 15, 24] as pairs
completeness.

• Accuracy: the percentage of the correctly classified pairs
[6, 24]. It is defined as the number of pairs correctly
classified as matches or non-matches to the total number
of pairs. This metric has been sometimes referred by
others [1, 18, 20] as precision.

The platform used for these experiments was a PC with
an Intel dual-Core Duo processor 2.2 GHz and 3GB of
memory. The protocol was implemented using Java and
tested under Windows XP. In the implementation, the
SecondString library [5] has been used for similarity
matching and Levenshtein distance has been used. The
library is available at http://secondstring.sourceforge.net/.
For indexing the embedded space, the KDTree
implementation available at http://www.cs.wlu.edu/~levy/kd
has been used. The Java source was modified in order to
implement the nearest neighbor using range search as
described in Section III.B.

A. Selection of Parameters for First Embedding
 The selection of a small dimension K would result in a

miss representation of the data, hence distance would not be
preserved and similar pairs and dissimilar pairs will not be
distinguished. However, setting K to a high value results in
high cost, both for embedding and matching, and we risk the
curse of dimensionality. For the selection of K, samples of
4000 records from the datasets have been embedded in
different dimensions and the quality of the embedding is
evaluated with respect to the stress [12], measuring the
distortion of the embedding defined as

stress =
' �()*�+,	�*�+-	./0�+,�+-		-1,�1-

' 0�+,�+-	-1,�1-

Also, the recall and accuracy were recorded. Results
when varying K for three dataset sizes (4K, 10K and 20K)
are shown in Figure 4. As expected, increasing K results in
lower stress values and higher recall and accuracy. Results
revealed that with K set to 25 and higher, very small
variation in the stress is obtained and very small
improvement in the recall and accuracy are reached.
Therefore, in the remaining of the experiments, K is set to
25. These results are similar to the results obtained by [13]
and [20].

���

����

����

����

����

����

����

���	

���

� �� �� �� �� �� �� ��

St
re

ss

K

��

���

���

(a)

����

����

����

����

���	

���

����

�

����

� �� �� �� �� �� �� ��

R
ec

al
l

K

��

���

���

���	�

���	

���

���
�

���
�

���
�

���

����

�����

�����

�����

� �� �� �� �� �� �� ��

A
cc

ur
ac

y

K

��

���

���

(b) (c)

Figure 4: Stress, recall and accuracy of first embedding, varying K

Another important parameter that affects the performance

and the effectiveness of the matching protocol is the
threshold �. We ran a set of experiments on the full datasets
4K, 10K and 20K while varying � from 0.1 to 2. It should be
noticed that there is no need to set � higher than 2 since the
mapping used is contractive. Since we knew which records
were the true matches, therefore we could compute the recall
and accuracy. Results are shown in Figure 5.

As expected, increasing � results in improving the recall
(Fig 5(a)) as large value of � ensures that all true matches are
included in the results returned from the matching protocol,
at the cost of an increase in the matching time. The recall
reaches good values close to 1 for � larger than 1.6. At �=1.8
the recall reaches 100% for all the three data sets. However,
increasing � results in a decrease in the accuracy as larger
values of � results in more false positives returned. However,
it is noticed from Figure 5(b) that the decrease in accuracy is
very small, ranging from 0.5% to 0.6% at �=1.8. On the basis
of these experiments, the chosen embedding parameters were
for K to be set to 25 and for � to be set at 1.8.

���

���

���

���

��

���

���

��� ��� ��� ��	 ��� ��� ��� ��� ��	 ���

R
ec

al
l

�

��

���

���

���

�����

�����

�����

�����

����

�����

�����

��� ��� ��� ��	 ��� ��� ��� ��� ��	 ���

A
cc

ur
ac

y

�

��

���

���

 (a) (b)

Figure 5: Recall and accuracy of first embedding, Varying �

B. Selection of Parameters of Second Embedding
In this section, the effectiveness of the proposed Double

Embedding Scheme (DES) is evaluated, measured in terms
of the recall and accuracy as well as its efficiency measured
in terms of the total execution time. The two parameters
affecting the performance of the double embedding are K�
and ��. A set of experiments has been conducted varying K�
from 2 to 10 and varying �� from 0.1 to 2 for each K�. Again,
�� does not need to be larger than 2 since the FastMap
algorithm used in the second mapping is contractive. The
experiments are repeated for the three datasets in order to
demonstrate the scalability of the protocol and to observe the
effect of variation of the parameters K� and �� when the data
size increases.

Figure 6 shows the recall and accuracy for the 4K
dataset, varying �� from 0.1 to 2 for different values of K�.
The results of the Single Embedding Scheme (SES) are also
shown for comparison, with K=25 and �=1.8.

As expected, increasing �� results in an increase in the
recall as larger values of �� increases the number of true
positives returned from the matching protocol. High recall
values are reached for �� >1.4 for all K�. The primary reason
is that the embedding used is contractive and provides a good
distance/similarity preservation. The accuracy on the other
hand decreases as �� increases, since more false positives are
returned. However, it reaches the accuracy of SES for ��>1.4.
The same results were obtained for the 10K and 20K
datasets, not shown for space constraint.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.1 0.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9

R
ec

al
l

��

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

SES
�����

�����

�����

�����

�����

�����

����	

����

�����

�����

�����

��� ��� ��� ��	 ��� ��� ��� ��� ��	 ���

A
cc

ur
ac

y

��

�
��

�
��

�
��

�
��

�
�

�
���

���

 (a) (b)

Figure 6: effectiveness of DES for 4K dataset

Figure 7(a) shows the execution time of DES while

varying �� and K�. It is observed that the cost increases as ��
increases. This is expected as while matching in the KDTree,
less pruning is done as there are more nodes to be retrieved
for larger ��. Also, this increase is due to the increase in the
number of potential matching pairs generated from the first
level matching. However, for all �� and K�, the cost of the
DES is substantially lower than SES, resulting in a minimum
of 30% improvement for all K�. The effect of the variation of
K� on the cost is somehow complex since it consists of three
components. The first component is the embedding time,
which increases as K� increases. The second component is
the cost of indexing, that is building the KDtree for one of

the embedded sets, then applying the nearest neighbor
algorithm using range search for the second set. This cost
also increases with the increase of K�. The third component,
is the final stage of matching, which consists of computing
the Euclidean distance between the set of matching pairs
resulting from indexing and searching the KDtree. This cost
is dependent on the number of matching pairs returned,
which decreases as K� increases. This decrease is attributed
to a more accurate representation of the embedded records,
hence more accurate matching pairs are obtained.

Figure 7(b) shows the total execution time for �� larger
than 1.4. It is plotted separately in order to show the effect of
varying K� more closely. �� is chosen from 1.4 to 2.0 since
this is the range �� will be chosen from to achieve a good
recall. It is observed that the cost of DES gives improvement
for ��>1.4 ranging from 30% to 64% than SES for all values
of K�. The lowest cost is achieved with K�=3, which achieves
the best balance in the cost of the indexing versus the
number of potential matching pairs. For K�=2, the cost is
higher than K�=3 because the number of detected pairs in the
first matching phase is much higher than for K�=3 (2.2m
pairs versus 1.7m pairs for �� =1.5). Hence, the pair matching
cost is higher, which increases for larger values of ��. For K�=
4 and 5, the cost is quite similar. It is higher than that of K�=3
because the increase in the indexing and matching cost
(KDTree) is higher than the decrease in the matching pair
cost. They are higher than K�=2 for �� smaller than 1.5, then
they outperform K�=2 since the increase in their indexing and
matching cost is lower than its increase in the matching pair
cost. When K� is set to 8 and 10 the cost gets higher as the
indexing and matching cost increases.

���

���

���

���

���

���

���

���

��� ��� ��� ��	 ��� ��� ��� ��� ��	 ���

E
xe

cu
tio

n
T

im
e

(s
ec

)

��

�
��

�
��

�
��

�
��

�
�

�
���

���

(a)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

1.4 1.5 1.6 1.7 1.8 1.9 2

E
xe

cu
tio

n
T

im
e

(s
ec

)

��

K'=2

K'=3

K'=4

K'=5

K'=8

K'=10

(b)

Figure 7: Cost of DES for 4K dataset

Running the same experiments on the 10K dataset
revealed that although the improvement in the cost decreases
as �� increases, it ranges from 30% to 60% for all K� for
��>1.4. Figure 8(a) shows the cost for the 10K dataset for
��>1.4 and Figure 8(b) shows the breakdown of the total cost
for ��=1.5 for all K�. It is noticed that for ��=1.5, the total cost
reaches its minimum at K�=4, where the increase in the
embedding time and the KDTree is lower than the decrease
in the pair matching time. From Figure 8(a), it is observed

that K�=4 and 5 yield the best balance between the three
components. The cost of K�=2 and 3 is higher because the
matching pair time is dominant. The cost of K�=8 and 10 are
higher than all where the indexing and matching (KDTree)
increase is more dominant.

�

��

��

��

��

��

��

��

�	

��� ��� ��� ��	 ��
 ��� �

��
�
��
��
�
	

�
��

�

��
��

��

�
��

�
��

�
��

�
��

�
�

�
���

(a)

�

�

�

�

��

��

��

� � � � � 	
 � ��

E
xe

cu
tio

n
T

im
e

(s
ec

)

K�

�� ���

������

������ ����

� ��!

(b)

Figure 8: cost of DES for 10K dataset

Figure 9(a) shows the cost for the 20K dataset for ��>1.4.
Figure 9(b) shows that for ��=1.5, the total cost reaches its
minimum at K�=6, where the increase in the embedding time
and the KDTree is lower than the decrease in the pair
matching time. From Figure 9(a), it is observed that K�=6
yields the best balance between the three cost components,
followed by K�=5, then K�=8. The cost of K�=2 and 3
experience the highest cost, especially for �� larger than 1.4
where the matching pair time is dominant. The cost of K�=10
is high, specially for small value of ��, where the indexing
and matching (KDTree) increase is more dominant. As ��
increases, K� set to 10 shows lower cost than K� set to 4 or
smaller, as the increase in the matching pair time is minimal
compared to smaller K�.

��

��

��

��

��

��

��

��

	�

	�

��� ��� ��� ��	 ��
 ��� �

E
xe

cu
tio

n
T

im
e

(s
ec

)

K�

�
��

�
��

�
��

�
��

�
��

�
�

�
���

(a)

�

�

��

��

��

��

��

��

��

��

��

� � � � �
 ��

E
xe

cu
tio

n
T

im
e

(s
ec

)

K�

�� ���

������

������ ����

� ��!

(b)

Figure 9: Cost of DES for 20K dataset
The above experiments show that the selection of K�

affects the improvement of the cost, and is dependent on the

size of the dataset. As the size of the dataset increases, larger
values of K� yields lower cost. However, it is shown that for
�� set to 1.5, the worst selection of K� would result in a 40%
improvement, while an optimum selection can lead to
improvement ranging from 50% to 60% over SES.

C. Effect of Datasize Variation
To evaluate the scalability of DES, its run time is

compared with the run time of matching records in the
original space, varying the datasets from 4K to 20K, shown
in Figure 10(a). It is obvious that matching strings requires
by far more time due to O(N2) string distance computations
and the difference is more dramatic as the data size
increases. The scalability of the protocol is studied also in
comparison with SES as shown in Figure 10(b). The
parameters used for SES were K=25, �=1.8, and for DES ��
=1.5 and K�=3 for N=4K, K�=4 for N<10K, K�=5 for N<16K
and K�=6 for N<20K. The results show that DES outperforms
SES, especially for large datasets, showing improvement
ranging from 59% to 64%.

�

�"���

�"���

�"���

�"���

�"���

�"���

	"���

"���

�"���

� �
 �� �� �� �� �
 ��

E
xe

cu
tio

n
T

im
e

(s
ec

)

records in each dataset (in 1000)

���

����#$

(a)

�

��

��

��

�

���

���

� �
 �� �� �� �� �
 ��

�
�
�
��
��
�
	

�
��

�

��
��

records in each dataset (in 1000)

���

���

(b)

Figure 10: Cost of DES vs string matching and SES

VI. CONCLUSIONS

This paper introduced a novel scheme for record linkage
based on double embedding of the data, aiming at improving
the efficiency. A two level matching is proposed, with the
first level performing a fast and inaccurate matching,
ensuring high recall while the second level performs a more
expensive matching, on a smaller set of pairs, to improve the
accuracy. Experimental evaluation on real datasets revealed
that, by using contractive embedding techniques that
preserve the distance between records values, the suggested
scheme outperforms the single embedding scheme achieving
gains in time performance ranging from 30% to 60%, while
achieving the same level of recall and accuracy. Future work
will address scenarios with more than two parties and
different data types such as DNA sequence, etc.

REFERENCES
[1] A. Al-Lawati, D. Lee, P. McDaniel, Blocking-aware Private Record

Linkage, IQIS 2005.

[2] R. Baxter, P. Christen, A comparison of fast blocking methods for
record linkage, In KDD Workshop on Data Cleaning, Record Linkage
and Object Consolidation, 2003

[3] J. Bourgain, On Lipschitz Embedding of Finite Metric Spaces in
Hilbert Space, Israel Journal of Mathematics, no. 1-2, 1985

[4] P. Christen, Automatic record linkage using seeded nearest neighbour
and support vector machine classification. In Proc. of 14th ACM
SIGKDD Intl Conf. on Knowledge Disc. and Data Mining, Aug 2008

[5] W. Cohen, P. Ravikumar, S. Fienberg. A comparison of string
distance metrics for matching names and records. In KDD Workshop
on Data Cleaning, Record Linkage and Object Consolidation, 2003

[6] M. Elfeky, V. Verykios, A. Elmagarmid: TAILOR: A Record
Linkage Toolbox. In Proc. of ICDE, 2002

[7] A. Elmagarmid, G. Panagiotis, S. Verykios, Duplicate Record
Detection: A Survey, IEEE TKDE, Vol. 19, no. 1, 2007

[8] C. Faloutsos, K. Lin. FastMap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets.
SIGMOD Record, 24(2):163–174, June 1995.

[9] V. Gaede, O. Günther, Multidimensional access methods, ACM
Computing Survey. 30, 2 , June 1998

[10] M. Hernandez, S. Stolfo, Real-world data is dirty: data cleansing and
the merge/Purge problem, Data Mining and Knowledge Discovery
2(1):9-37, 1998.

[11] G. Hjaltason, H. Samet, Incremental distance join algorithms for
spatial databases, ACM SIGMOD, 1998

[12] G.R. Hjaltason, H. Samet, Properties of Embedding Methods for
Similarity Searching in Metric Spaces, IEEE TPAMI, Vol. 25, 2003

[13] G. Hristescu, M. Farach-Colton, Cluster-preserving embedding of
proteins, Technical Report, Rutgers Univ., Piscataway, 1999.

[14] E. Jacox, H. Samet, Metric space similarity joins, ACM Transactions
on Database Systems. 33, 2 Jun. 2008

[15] L. Jin, C. Li, S. Mehrotra, Efficient Record Linkage in Large Data
Sets, DASFAA , 2003.

[16] N. Koudas, S. Sarawagi, D. Srivastava, Record Linkage: Similarity
Measures and Algorithms, ACM SIGMOD, 2006.

[17] N. Linial, E. London, Y. Rabinovich. The geometry of graphs and
some of its algorithmics application, Combinatorica, vol 15, 1995

[18] A. McCallum, K. Nigam, L. Ungar, Efficient clustering of high-
dimensional data sets with application to reference matching. Proc.
6th ACM SIGKDD Intl Conf. on Knowledge Disc. Data Mining, 2000

[19] A. Moore, “An Introductory Tutorial on Kd-Trees.” Extract from
Efficient Memory-based Learning for Robot Control (Technical
Report 209). Computer Laboratory, University of Cambridge, 1991.

[20] M. Scannapieco, I. Figotin, E. Bertino, A. Elmagarmid, Privacy
preserving schema and data matching. In Proceedings of the 2007
ACM SIGMOD Intl Conference on Management of Data 2007

[21] W. Shen, P. DeRose, L. Vu, A. Doan, R. Ramakrishnani, Source-
aware Entity Matching: A Compositional Approach. In Proc. of 23rd
Intl Conf. on Data Eng., ICDE, April, 2007

[22] D. Talbert, D. Fisher, An empirical analysis of techniques for
constructing and searching k-dimensional trees. In Proc. of 6th ACM
SIGKDD Intl Conf. on Knowledge Disc. and Data Mining, Aug 2000

[23] V. Verykios, A. Elmagarmid, E. Houstis, Automating the
approximate record-matching process. Info. Sciences, 126, July 2000

[24] V. Verykios, M. Elfeky, A. Elmagarmid, M. Cochinwala, S.
Dalal. On the accuracy and completeness of the record matching
process. In Proc. of the 2000 Conf. on Information Quality, Oct.2000.

[25] J. Wang, X. Wang, K. Lin, D. Shasha, B. shapiro and K. Zhang, An
Index Structure for Data Mining and Clustering, Knowledge and
Information Systems, vol. 2, no. 2, May 2000

[26] J. Wang et al, Evaluating a Class of Distance-Mapping Algorithms
for Data Mining and Clustering”, Proc. ACM SIGKDD Int’l Conf.
Knowledge Discorvery and Data Mining,, Aug 1999

[27] M. Yakout, M. Atallah, A. Elmagarmid, Efficient Private Record
Linkage, In Proc. of 25th Intl Conf. on Data Eng., ICDE, April 2009

