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Discrete Time Markov Chains

8.1 Review
{X,} possiblestates n=0,1,2,...

Markov Property

P{Xn—l—l‘XO7X17 s 7XTL} — P{X’n—l—lan}

pij(n) = P{X,11 = j|X, =i} 1-step probabilities

If p;;(n) =p;; the process istermed Time Homogeneous

S = state space ={0,1,2,...}

ZjeSpij =1, pij = 0
P = (pi;) 4,5 €S Stochastic Matrix
a; = P{ Xy =1} X = initial state

{a;} and P completely determine the process

207



= P{X,, = j} = Prob. of being at X,, = j in n steps

= > ies P1Xyn = j| Xo = i}ay
= Prob. of going from 7 — j In n steps

Chapman-Kolmogorov Equations

forany k(0 < k <n) |pi) = picpln

€S

p(n) — p(k) p(n—Fk)

a(m) = qP"
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8.2 Statistical Equilibrium

Question: After a sufficiently long time does the system settle down into
a condition of statistical equilibrium?

o™ =aP” "™ :1xk a:lxk, P:kxk

Define II = lim /™ = g lim P" = aP(>)

n—aoo n—aoo

In order to settle into statistical equilibrium P(°°) must exist.
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Limit exists
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Example:

P =

0
1

=0

(1) canonly returnto (1) in 2 steps
(2) canonly return to (2) in 2 steps

Limit does not exist.
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Consider the average

[+P+P+...+ Pt (n+1)

P*2n+1) = _
(2n+1) on + 2 2(n + 1)

1 1
1 1

as I + P =

I+ P+ P2+, 4 pPntd
lim —
n— 00 2n + 2

In general if P(°°) does not exist

I+P+P>+...4+P"

lim does exist
7— 00 n—+1

If P(°°) does exist, P(®) = P*(c0).
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_I+P+P*+... 4P
N n—+1
Returning to problem of equilibrium distribution

P*(n)

'™ =g VP 1= lima™

n—00

Assume P(>) exists, then II=1IIP or II(I — P)=0
resulting in linear equations in I1. A solution exists if | — P| = 0.

Recall | P — AI| = 0 determines the eigenvalues.

Hence if A = 1 isan eigenvalue | — P| = 0.

Since P is stochastic » “p;; = 1, all row sums are unity; i.e.
jes

Pl=1 1=(1,1,...,1)

The eigenvectors are defined by Pz = Ax. In our case
A=1, x =1 whichshows |P —I| =0
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MN=1P, II= lima™.

n—oo

Note however
pt) = pr = prlp

and as n — oo, pl(o) = p(2)p
PN —P)=0

Thus 11T = P(>). Since P(°>) does not involve a (initial conditions), the
system in statistical equilibrium is independent of the initial conditions.

(1)

Note: P(oo):kxk 1Il =

5y




Spectral Decomposition

Suppose max eigenvalue is A; = 1, all others are |\;| < 1 and \; is of
multiplicity one. The spectral decomposition is defined by being able to
write P as:

k k
P = ZAE — B + ZAE
=1 2

k
P =Ei+)Y \NE, E}=E; EE; =0 i#]
2

k
Pt =E + Y A'E;— E; asn — oo
2

P> = lim P" = E;

n—oo

FE1 can be found from left and right eigenvalues of P with \; = 1.
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Az =x (righteigenvector) x:k x 1

Ay’ (left eigenvector) vy : k x 1

k
Choose scale of y suchthat 1'y =) y; =1
1

Eq

2 =1lly =1y = E;

Conclusion: If P has only a single eigenvalue equal to 1 and all others
are |\;| < 1 = P = E can easily be found.
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8.3 Ex. Two State Markov Chains

S = {0,1}

1-p

We wish to write the spectral decomposition of P. = Find the
eigenvalues and eigenvectors

P—X|=0=

1l —a— )\ Q

=0

3 1— 68—\

(1-a—-N1-8-AN)—-aB=0=X-A2-a-pB)+(1—-a—-3)=0

=

)\1:1, )\2:(1—04—6)

Pr=MNt Pxr==x

roots are distinct provided oo + 8 # 0

1
1

for\i=1 z=1=
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I.e. 1 is the eigenvector

as expected.

(22) C)

(1—a)z1+axs =(1—a—pF)r; = [r1=—axs
By + (1= )z

Setx; = «, then 9 = —0
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Define y as a (left) eigenvector of P.

If v = (y1,y2) wehave ¢ P =1y’ (left eigenvector associated

( ) 1l -«
Y1 Y2 3 -

with A =1)

y1(1 —a) +y28 yia+y2(l - 5)} = {yl y2}

Y1 (1 — ) + Y28 = 11

= Yyir = Ya2—,
v+ y2(1 —B) = yo e

Set yo=a= y1 =0
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However since these are the limiting probabilities, the row sums must add
to unity. We shall scale the eigenvector by (o + 3)~!; i.e.
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To obtain the left eigenvector correspondingto A = (1 — a— (3) we have

yP=(1-a-p0)y

which can be written with y' = (y1 y2)
Yy P=[y(1—a)+ Py yiat+y(1-0)]=1—a—06)y1 v

Onsolving yia = —ays Or y; = —yo. We can take
y1 = 1, yo = —1. However it is necessary to divide by the scale factor
(o + B). Therefore correspondingto A = (1 —a — ) we have

84 —

-3 8|

Ey=azy = (a+p)"" 1 -1 =(a+p)""
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We now can write

P = ME1+)XFEy = (A 6)71

and for P™ we have

Ploo) —
a+ 0

P(*>) are equilibrium values

Note: To obtain P(>) directly it is only necessary to find the left and
right eigenvectors associated with A = 1.
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8.4 Existence of P(°°)

Theorem If P(°) exists it will always equal

I+P+...+P"
P*(c0) = lim T +_|_ : *
n— 00 n

Proof: Suppose P(>) exists; i.e. P(>) = E; and P has only a single
eigenvalue = 1.

Suppose P (m x m).
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( n m 3
. r=1 1=2 )

( m n \
\ 1=2 r=1 J

1 1 — A"
]+nE1+Z A )EZ}

n-+1 \ P — A

as n — oo, P*(oc0)=FE;

= | P*(c0) = By = P™)
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8.5 Classification of States

Definition: A state j is accessible from state  if for some
n > 0, p("'f”) > 0. We shall use the notation : — j to denote j is
accessible from «.

¥

Definition: If: — 5 and j — 1 the two states communicate;

l.e. p§?> >0, p

(/)

5 >0 forsomen,n’.

Definition: A set C' C .S is a communicating class if

(i) ieC, jeC= 1< j
(i) ieC, i< j= jel

Definition: A communicating class C' is closed if
i € Cand j ¢ C' = implies j is not accessible.
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Def.: A Markov Chain is said to be irreducible if all states belong to a
single closed communicating class. Otherwise it is called reducible.

EX. ©—>@ C={1, 2} is a closed
D communicating class.

C={1} is a closed communicating class
C={2} i1s a communicating class
which is not closed.

Note: All states communicate in an irreducible Markov Chain.

If P is reducible then by relabeling states we can can write

A O
B C

Note that transitions from A to other states cannot happen.
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Chy ={1,6}, Cy ={2,5}, C3 = {4} are closed communicating classes.

T = {3} isacommunicating class which is not closed.
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Ex. Random Walk with absorbing boundaries S = {0,1,... ,N}

poo =PNN =1, Dpiiv1 =D, Dii-1=¢q, p+qg=1

JoWo=o=ORECROY

Ch =40} and Cy; = {N} are closed communicating classes

T ={1,2,...,N — 1} non-closed communicating class
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Def. A state 7 is periodic with period d if d is the largest integer d such
that p,f?) > 0 where n = integer multiple of d.

Def. A state 7 is aperiodic if d = 1.
Def. (Alternate): T; = min{n > 0: X,, =i}

A state ¢ Is aperiodic with period d, if d = largest integer such that

P{T; = n| Xy =i} > 0 = nis an integer multiple of d

0 1
1 0

Ex. P=

If X, = 1, can only visit state 1 at times 2, 4, 6, ... Hence d = 2.

Since 1 +—— 2, then state 2 is also periodic with d = 2.
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8.6 Terminology Summary

Def. Accessible

State j is accessible from state C' for some n > 0, pgy) >0 (i—7)

Def. Communicate

States ¢ and 5 communicate if each is accessible from the other (v < )

Def. Communicating Class

A set C' is said to be a communicating class if
(1) 1€eC,jeC=i—j

(i) 1eCyi—j=j5€C
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Def. Closed Communicating Class

A communicating class is closed if i € C'and 5 ¢ C implies j is not
accessible from z.

Def. Irreducible

A Markov Chain is irreducible if all states belong to a single closed
communicating class; i.e. all states in an irreducible chain communicate

with each other.

Def. Reducible

A chain is reducible if by relabeling states, P can be written

A O
B C
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Def. Periodicity

A state is periodic with period d if d is largest integer such that

pg?) > 0 = n is integer multiple of d

Def. Aperiodicity

A state 7 is aperiodic if d = 1.

Def. A state ¢ is recurrent if starting initially from ¢ (Xo = 4) it returns to
¢ with probability one (f; = 1).

Def. Transient

A state ¢ Is transient if f; < 1.
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Def. Positive and Null Recurrent

If m; = mean time to return to state 7 (Xy = ¢), then state ¢ is

positive recurrent if m; < oo

null recurrent if m; = oo

Def. Ergodicity

A state ¢ Is ergodic if it is aperiodic and positive recurrent.

Def. Absorbing State

A state ¢ Is absorbing if once entered cannot leave; i.e. closed set
consisting of a single state.
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