8. Statistical Equilibrium and Classification of States: <u>Discrete Time Markov Chains</u>

- 8.1 Review
- 8.2 Statistical Equilibrium
- 8.3 Two-State Markov Chain
- 8.4 Existence of $P(\infty)$
- 8.5 Classification of States
- 8.6 Terminology (Summary)

Discrete Time Markov Chains

8.1 Review

 $\{X_n\}$ possible states $n = 0, 1, 2, \dots$

Markov Property

$$P\{X_{n+1}|X_0,X_1,\ldots,X_n\} = P\{X_{n+1}|X_n\}$$

$$p_{ij}(n) = P\{X_{n+1} = j | X_n = i\}$$
 1-step probabilities

If $p_{ij}(n) = p_{ij}$ the process is termed Time Homogeneous

$$S = \text{state space} = \{0, 1, 2, \dots\}$$

$$\sum_{j \in S} p_{ij} = 1 \quad , \qquad p_{ij} \ge 0$$

$$P = (p_{ij})$$
 $i, j \in S$ Stochastic Matrix

$$a_i = P\{X_0 = i\}$$
 $X_0 = \text{initial state}$

 $\{a_i\}$ and P completely determine the process

$$a_j^{(n)}=P\{X_n=j\}= ext{ Prob. of being at } X_n=j ext{ in } n ext{ steps}$$

$$=\sum_{i\in S} P\{X_n=j|X_0=i\}a_i$$

$$p_{ij}^{(n)}= ext{ Prob. of going from } i\to j ext{ in } n ext{ steps}$$

Chapman-Kolmogorov Equations

for any
$$k(0 \le k \le n)$$
 $p_{ij}^{(n)} = \sum_{i \in S} p_{ir}^{(k)} p_{rj}^{(n-k)}$

or if
$$P^{(n)} = (p_{ij}^{(n)})$$
 $P^{(n)} = P^{(k)}P^{(n-k)}$

$$P^{(n)} = P^n \quad \Rightarrow \quad a^{(n)} = aP^n$$

where

$$a = (a_1, a_2, \dots, a_m)$$
 $(1 \times m)$
 $a^{(n)} = (a_1^{(n)}, a_2^{(n)}, \dots, a_m^{(n)})$ $(1 \times m)$
 $P = (P_{ij})$ $(m \times m)$

8.2 Statistical Equilibrium

<u>Question</u>: After a sufficiently long time does the system settle down into a condition of statistical equilibrium?

$$a^{(n)} = aP^n \quad a^{(n)} : 1 \times k, \quad a : 1 \times k, \quad P : k \times k$$

Define
$$\Pi = \lim_{n \to \infty} a^{(n)} = a \lim_{n \to \infty} P^n = a P^{(\infty)}$$

In order to settle into statistical equilibrium $P^{(\infty)}$ must exist.

Ex.

$$P = \begin{bmatrix} .1 & .2 & .7 \\ .2 & .4 & .4 \\ .1 & .3 & .6 \end{bmatrix} \qquad a = \begin{bmatrix} .13 \\ .56 \end{bmatrix}$$

$$P^{3} = \begin{bmatrix} .131 & .319 & .550 \\ .132 & .318 & .550 \\ .132 & .319 & .549 \end{bmatrix} \qquad a^{(3)} = \begin{bmatrix} .132 \\ .319 \\ .549 \end{bmatrix}$$

$$P^{(\infty)} = \begin{bmatrix} .132 & .319 & .549 \\ .132 & .319 & .549 \\ .132 & .319 & .549 \end{bmatrix} \qquad a^{(\infty)} = \begin{bmatrix} .132 \\ .319 \\ .549 \end{bmatrix}$$

Limit exists

Example:

$$P = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

- (1) can only return to (1) in 2 steps
- (2) can only return to (2) in 2 steps

$$P^{2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$P^{3} = P, \ P^{2n} = I, \ P^{2n+1} = P, \ I + P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Limit does not exist.

Consider the average

$$P^*(2n+1) = \frac{I + P + P^2 + \dots + P^{2n+1}}{2n+2} = \frac{(n+1)}{2(n+1)}(I+P)$$

$$= \frac{1}{2} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \quad \text{as} \quad I + P = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

In general if $P^{(\infty)}$ does not exist

$$P^*(\infty) = \lim_{n \to \infty} \frac{I + P + P^2 + \ldots + P^n}{n+1}$$
 does exist

If $P^{(\infty)}$ does exist, $P^{(\infty)} = P^*(\infty)$.

$$P^*(n) = \frac{I + P + P^2 + \dots + P^n}{n+1}$$

Returning to problem of equilibrium distribution

$$a^{(n)} = a^{(n-1)}P \qquad \Pi = \lim_{n \to \infty} a^{(n)}$$

Assume $P^{(\infty)}$ exists, then $\Pi = \Pi P$ or $\Pi(I - P) = 0$ resulting in linear equations in Π . A solution exists if |I - P| = 0.

Recall $|P - \lambda I| = 0$ determines the eigenvalues.

Hence if $\lambda = 1$ is an eigenvalue |I - P| = 0.

Since P is stochastic $\sum_{j \in S} p_{ij} = 1$, all row sums are unity; i.e.

$$P\underline{1} = \underline{1} \quad \underline{1}' = (1, 1, \dots, 1)$$

The eigenvectors are defined by $Px = \lambda x$. In our case $\lambda = 1, \ x = \underline{1}$ which shows |P - I| = 0

$$\Pi = \Pi P, \qquad \Pi = \lim_{n \to \infty} a^{(n)}.$$

Note however

$$P^{(n)} = P^n = P^{n-1}P$$

and as $n \to \infty$,

$$P^{(\infty)} = P^{(\infty)}P$$

$$P^{(\infty)}(I-P) = 0$$

Thus $\underline{1}\Pi = P^{(\infty)}$. Since $P^{(\infty)}$ does not involve \underline{a} (initial conditions), the system in statistical equilibrium is independent of the initial conditions.

Note:
$$P(\infty): k \times k$$
 $\underline{1}\Pi = \begin{pmatrix} \Pi \\ \Pi \\ \vdots \\ \Pi \end{pmatrix}: k \times k$

Spectral Decomposition

Suppose max eigenvalue is $\lambda_1 = 1$, all others are $|\lambda_i| < 1$ and λ_1 is of multiplicity one. The spectral decomposition is defined by being able to write P as:

$$P = \sum_{i=1}^{k} \lambda_i E_i = E_1 + \sum_{i=1}^{k} \lambda_i E_i$$

$$P = E_1 + \sum_{i=1}^{k} \lambda_i E_i, \quad E_i^2 = E_i \quad E_i E_j = 0 \quad i \neq j$$

$$P^n = E_1 + \sum_{i=1}^{n} \lambda_i^n E_i \to E_1 \text{ as } n \to \infty$$

$$P^{\infty} = \lim_{n \to \infty} P^n = E_1$$

 E_1 can be found from left and right eigenvalues of P with $\lambda_1 = 1$.

$$Px = \lambda_1 x = x$$
 (right eigenvector) $x: k \times 1$
$$x = \underline{1}$$

$$y'P = \lambda_1 y'$$
 (left eigenvector) $y: k \times 1$

Choose scale of y such that $\underline{1}'y = \sum_{1}^{k} y_i = 1$

$$E_1 = xy' = \underline{1}y'$$

$$E_1^2 = \underline{1}y'\underline{1}y' = \underline{1}y' = E_1$$

Conclusion: If P has only a single eigenvalue equal to 1 and all others are $|\lambda_i| < 1 \Rightarrow P^{\infty} = E_1$ can easily be found.

8.3 Ex. Two State Markov Chains

$$S = \{0, 1\} \qquad P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

We wish to write the spectral decomposition of $P. \Rightarrow$ Find the eigenvalues and eigenvectors

$$|P - \lambda I| = 0 \Rightarrow \begin{vmatrix} 1 - \alpha - \lambda & \alpha \\ \beta & 1 - \beta - \lambda \end{vmatrix} = 0$$

$$(1 - \alpha - \lambda)(1 - \beta - \lambda) - \alpha\beta = 0 \Rightarrow \lambda^2 - \lambda(2 - \alpha - \beta) + (1 - \alpha - \beta) = 0$$

$$(1 - \alpha - \lambda)(1 - \beta - \lambda) - \alpha\beta = 0 \Rightarrow \lambda^2 - \lambda(2 - \alpha - \beta) + (1 - \alpha - \beta) = 0$$

$$\Rightarrow \lambda_1 = 1, \ \lambda_2 = (1 - \alpha - \beta) \text{ roots are distinct provided } \alpha + \beta \neq 0$$

$$Px = \lambda x$$
 $Px = x$ for $\lambda_1 = 1$ $x = \underline{1} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

$$P\underline{1} = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \text{ i.e. } \underline{1} \text{ is the eigenvector}$$
as expected.

To obtain the right eigenvector corresponding to $\lambda_2 = (1 - \alpha - \beta)$

$$P\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$
$$= \begin{pmatrix} (1 - \alpha)x_1 + \alpha x_2 \\ \beta x_1 + (1 - \beta)x_2 \end{pmatrix} = (1 - \alpha - \beta) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$(1 - \alpha)x_1 + \alpha x_2 = (1 - \alpha - \beta)x_1 \Rightarrow \beta x_1 = -\alpha x_2$$
$$\beta x_1 + (1 - \beta)x_2 = (1 - \alpha - \beta)x_2$$

Set
$$x_1 = \alpha$$
, then $x_2 = -\beta$

Define y as a (left) eigenvector of P.

Since
$$P = \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix}$$

If $y' = (y_1, y_2)$ we have y'P = y' (left eigenvector associated with $\lambda = 1$)

$$(y_1 \ y_2) \begin{pmatrix} 1 - \alpha & \alpha \\ \beta & 1 - \beta \end{pmatrix} = (y_1 \ y_2)$$

$$[y_1(1 - \alpha) + y_2\beta \quad y_1\alpha + y_2(1 - \beta)] = [y_1 \quad y_2]$$

$$y_1(1 - \alpha) + y_2\beta = y_1$$

$$y_1\alpha + y_2(1 - \beta) = y_2 \Rightarrow y_1 = y_2\frac{\beta}{\alpha},$$

$$y_1\alpha + y_2(1 - \beta) = y_2$$
Set $y_2 = \alpha \Rightarrow y_1 = \beta$

$$E = xy' = \begin{pmatrix} 1 \\ 1 \end{pmatrix} (\beta \quad \alpha) = \begin{pmatrix} \beta & \alpha \\ \beta & \alpha \end{pmatrix}$$

However since these are the limiting probabilities, the row sums must add to unity. We shall scale the eigenvector by $(\alpha + \beta)^{-1}$; i.e.

$$\Rightarrow \qquad E = \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix}$$

Check:
$$E^2 = \frac{1}{(\alpha + \beta)^2} \begin{vmatrix} \beta^2 + \alpha\beta & \beta\alpha + \alpha^2 \\ \beta^2 + \alpha\beta & \beta\alpha + \alpha^2 \end{vmatrix} = \frac{1}{\alpha + \beta} \begin{vmatrix} \beta & \alpha \\ \beta & \alpha \end{vmatrix} = E$$

To obtain the left eigenvector corresponding to $\lambda = (1 - \alpha - \beta)$ we have

$$y'P = (1 - \alpha - \beta)y'$$

which can be written with $y' = (y_1 \ y_2)$

$$y'P = [y_1(1-\alpha) + \beta y_2 \ y_1\alpha + y_2(1-\beta)] = (1-\alpha-\beta)[y_1 \ y_2]$$

On solving $y_1\alpha=-\alpha y_2$ or $y_1=-y_2$. We can take $y_1=1,\ y_2=-1$. However it is necessary to divide by the scale factor $(\alpha+\beta)$. Therefore corresponding to $\lambda=(1-\alpha-\beta)$ we have

$$E_2 = xy' = (\alpha + \beta)^{-1} \begin{bmatrix} \alpha \\ -\beta \end{bmatrix} [1 - 1] = (\alpha + \beta)^{-1} \begin{bmatrix} \alpha & -\alpha \\ -\beta & \beta \end{bmatrix}.$$

We now can write

$$P = \lambda_1 E_1 + \lambda_2 E_2 = (\lambda + \beta)^{-1} \left\{ \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix} + (1 - \alpha - \beta) \begin{bmatrix} \alpha & -\alpha \\ -\beta & \beta \end{bmatrix} \right\}$$

and for P^n we have

$$P^{n} = \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix} + \frac{(1 - \alpha - \beta)^{n}}{\alpha + \beta} \begin{bmatrix} \alpha & -\alpha \\ -\beta & \beta \end{bmatrix}$$

$$P^{(\infty)} = \frac{1}{\alpha + \beta} \begin{bmatrix} \beta & \alpha \\ \beta & \alpha \end{bmatrix}$$

 $P^{(\infty)}$ are equilibrium values

Note: To obtain $P^{(\infty)}$ directly it is only necessary to find the left and right eigenvectors associated with $\lambda = 1$.

8.4 Existence of $P^{(\infty)}$

Theorem If $P^{(\infty)}$ exists it will always equal

$$P^*(\infty) = \lim_{n \to \infty} \frac{I + P + \dots + P^n}{n+1}$$

<u>Proof:</u> Suppose $P^{(\infty)}$ exists; i.e. $P^{(\infty)} = E_1$ and P has only a single eigenvalue = 1.

$$P^*(n) = \frac{I + P + \dots + P^n}{n+1} = \sum_{r=0}^{n} \frac{P^r}{n+1}$$

Suppose $P(m \times m)$.

$$P^{r} = \sum_{i=1}^{m} \lambda_{i}^{r} E_{i} = E_{1} + \sum_{i=2}^{m} \lambda_{i}^{r} E_{i} \quad \lambda_{i} < 1, r \neq 0$$

$$P^{*}(n) = \frac{1}{n+1} \left\{ I + \sum_{r=1}^{n} \left[E_{1} + \sum_{i=2}^{m} \lambda_{i}^{r} E_{i} \right] \right\}$$

$$= \frac{1}{n+1} \left\{ I + nE_{1} + \sum_{i=2}^{m} E_{i} \sum_{r=1}^{n} \lambda_{i}^{r} \right\}$$

$$= \frac{1}{n+1} \left\{ I + nE_{1} + \sum_{i=2}^{m} \frac{\lambda_{i} (1 - \lambda_{i}^{n})}{1 - \lambda_{i}} E_{i} \right\}$$
as $n \to \infty$, $P^{*}(\infty) = E_{1}$

$$\Rightarrow P^{*}(\infty) = E_{1} = P^{(\infty)}$$

8.5 Classification of States

<u>Definition</u>: A state j is accessible from state i if for some n > 0, $p_{ij}^{(n)} > 0$. We shall use the notation $i \to j$ to denote j is accessible from i.

<u>Definition:</u> If $i \to j$ and $j \to i$ the two states communicate; i.e. $p_{ij}^{(n)} > 0$, $p_{ji}^{(n\prime)} > 0$ for some n, n'.

<u>Definition</u>: A set $C \subset S$ is a communicating class if

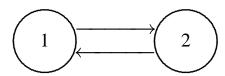
(i)
$$i \in C, j \in C \Rightarrow i \leftrightarrow j$$

(ii)
$$i \in C$$
, $i \leftrightarrow j \Rightarrow j \in C$

<u>Definition</u>: A communicating class C is <u>closed</u> if $i \in C$ and $j \notin C \Rightarrow$ implies j is not accessible.

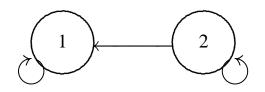
<u>Def.</u>: A Markov Chain is said to be <u>irreducible</u> if all states belong to a single closed communicating class. Otherwise it is called <u>reducible</u>.

 $\underline{\mathbf{E}\mathbf{x}}$.



C={1, 2} is a closed communicating class.

Ex.



C={1} is a closed communicating class C={2} is a communicating class which is not closed.

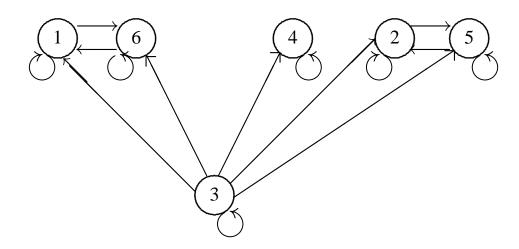
Note: All states communicate in an irreducible Markov Chain.

If P is <u>reducible</u> then by relabeling states we can can write

$$P = \begin{pmatrix} A & O \\ B & C \end{pmatrix}$$

Note that transitions from A to other states cannot happen.

Ex.

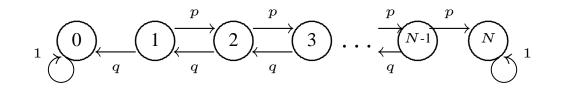


 $C_1 = \{1, 6\}, \ C_2 = \{2, 5\}, \ C_3 = \{4\}$ are closed communicating classes.

 $T = \{3\}$ is a communicating class which is not closed.

Ex. Random Walk with absorbing boundaries $S = \{0, 1, ..., N\}$

$$p_{00} = p_{NN} = 1$$
, $p_{i,i+1} = p$, $p_{i,i-1} = q$, $p+q=1$



 $C_1 = \{0\}$ and $C_2 = \{N\}$ are closed communicating classes $T = \{1, 2, \dots, N-1\}$ non-closed communicating class

<u>Def.</u> A state i is periodic with period d if d is the largest integer d such that $p_{ii}^{(n)} > 0$ where n = integer multiple of d.

<u>Def.</u> A state i is aperiodic if d = 1.

<u>Def.</u> (Alternate): $T_i = \min\{n > 0 : X_n = i\}$

A state i is aperiodic with period d, if d =largest integer such that

$$P\{T_i = n | X_0 = i\} > 0 \Rightarrow n \text{ is an integer multiple of } d$$

$$\underline{\text{Ex.}} \quad P = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right)$$

If $X_0 = 1$, can only visit state 1 at times 2, 4, 6, ... Hence d = 2.

Since $1 \longleftrightarrow 2$, then state 2 is also periodic with d = 2.

8.6 Terminology Summary

Def. Accessible

State j is accessible from state C for some $n \ge 0$, $p_{ij}^{(n)} > 0$ $(i \to j)$

Def. Communicate

States i and j communicate if each is accessible from the other $(i \leftrightarrow j)$

Def. Communicating Class

A set C is said to be a communicating class if

(i)
$$i \in C, j \in C \Rightarrow i \leftrightarrow j$$

(ii)
$$i \in C, i \leftrightarrow j \Rightarrow j \in C$$

Def. Closed Communicating Class

A communicating class is closed if $i \in C$ and $j \notin C$ implies j is not accessible from i.

Def. Irreducible

A Markov Chain is irreducible if all states belong to a single closed communicating class; i.e. all states in an irreducible chain communicate with each other.

Def. Reducible

A chain is <u>reducible</u> if by relabeling states, P can be written

$$P = \begin{pmatrix} A & O \\ B & C \end{pmatrix}$$

Def. Periodicity

A state is periodic with period d if d is largest integer such that

$$p_{ii}^{(n)} > 0 \Rightarrow n$$
 is integer multiple of d

Def. Aperiodicity

A state i is aperiodic if d = 1.

<u>Def.</u> A state i is <u>recurrent</u> if starting initially from i ($X_0 = i$) it returns to i with probability one ($f_i = 1$).

Def. Transient

A state i is transient if $f_i < 1$.

Def. Positive and Null Recurrent

If m_i = mean time to return to state i ($X_0 = i$), then state i is

positive recurrent if $m_i < \infty$

<u>null recurrent</u> if $m_i = \infty$

Def. Ergodicity

A state *i* is ergodic if it is aperiodic and positive recurrent.

Def. Absorbing State

A state i is absorbing if once entered cannot leave; i.e. closed set consisting of a single state.