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By the *“‘passive equations” of physics I mean those equations

which describe the motion of a small object in the presence of
a force field where we 1gnore the effect produced by this small
object. For example, Newton’s laws say that any two objects
attract one another. But if we study the motion of a ball or a
rocket in the gravitational field of the earth, we ignore the tiny
effect that the ball or rocket has on the motion of the earth.

If we have a small charged particle in an electromagnetic field,
the Lorentz equations describe the motion of the particle when
we 1gnore the field produced by the motion of the particle itself.

To explain what I mean by “general covariance” will take the
whole lecture.



The source of today’s lecture 1s a
late (1938) paper by Einstein,
Infeld and Hotftfman.

Vol. 39, No, I, January, 1938

THE GRAVITATIONAL EQUATIONS AND THE PROBLEM OF MOTION
By A. Kinstein, L. INrFeELD, axD B. HoFFMANN
(Received June 16, 1037)

Introduction. In this paper we investigate the fundamentally simpie ques-
tion of the extent to which the relativisiie cquations of gravitation determine
the motion of ponderable bodies.



I was unable to find on the web a picture of E., 1., &H. but
here is a photo of Einstein, Infeld, and Bergmann from 1938.
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theory of generalized functions) was developed. The person
who extracted the key idea from this paper in the modern
mathematical language was J. M. Souriau in 1974 who
applied the EIH method to determine the equations of motion
of a spinning charged particle in an electromagnetic field.

My purpose today is to explain how the E I H method as
formulated for spinning particles by Souriau can be viewed as



The Souriau paper.

Ann. Inst. Henri Poincare. Section A

Vol XX, n® 4, 1974, p. 315-3p4. Physique théorigue.

Modele de particule a spin
dans le champ électromagnétique
et gravitationnel (*)

par
Jean-Marie SOURIAU (¥

Centre de Physigue Théornigue, ¢, N. RS,
3, chemin J-Auguier, 13274 Marseille Cedex 2 {France)



easy read. He has a wonderful but
1diosyncratic mode of exposition.
For example, here 1s the flow
chart for the paper presented on
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Jean Marie Souriau




Back to the E I H paper:

Introduction. In this paper we investigate the fundamentally simple ques-
tion of the extent to which the relativistic cquations of gravitation determine
the motion of ponderable bodies.

What is this “fundamentally simple question™ ?



The two principles of general
relativity:

e The distribution of energy-matter
determines the geometry of space time.

e A “small” piece of ponderable matter moves
along a “geodesic” in the geometry
determined as above. I will spend some
time 1n today’s lecture explaining the
meanings of the word “geodesic”.



question 1s - what 1s the relation
(if any) between these two
principles? Many distinguished
physicists thought that these were



principle:

People slowly accustomed
themselves to the idea that the
phvsical states of space itself






Drawing by Rea Irvin: @ 1929, 1957 The New Yorker Magazine

“People slowly accustomed themselves to the idea that the
physical states of space itself were the final physical reality.”



What 1s a geodesic?

Before the EIH paper and the Souriau paper there were several

(equivalent) definitions of a what a geodesic 1s. They all try to
extend to more general geometries a characteristic property
that straight lines have in Euclidean geometry:

o A straight line is the “shortest distance between two points”.
e A straight line 1s “self-parallel” in the sense that it always points in

the same direction at all its points. A curved line will (in general) be
pointing in different directions at different points.



On a sphere, the shortest distance 1s a
piece of a great circle.

Here 1s a sphere drawn with
Matlab:

_




Here 1s a curve on the sphere
starting at the north pole.




Notice that the great circles emanating from the north pole
(the circles of longitude) are consistently shorter than the
corresponding piece of the curve.
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View from the top:

Notice that from this point of view, the circles of longitude look
almost like straight lines, and these lines are perpendicular to
the circles of latitude.This 1s an illustration of a special case of
what 1s known as Gauss’ lemma although in a sense this was
anticipated by al Biruni.



Abu Arrayhan Muhammad
iIbn Ahmad al-Biruni

Born: 15 Sept 973 in Kath, Khwarazm (now Kara-Kalpakskaya, Uzbekistan)
Died: 13 Dec 1048 in Ghazna (now Ghazni, Afganistan)



The book The history of cartography details the mathematical contributions of
al-Biruni. These include: theoretical and practical arithmetic, summation of series,
combinatorial analysis, the rule of three, irrational numbers, ratio theory,

algebraic definitions, method of solving algebraic equations, geometry,

Archimedes' theorems, trisection of the angle and other problems which cannot be
solved with ruler and compass alone, conic sections, stereometry,

stereographic projection, trigonometry, the sine theorem in the plane, and solving
spherical triangles.

Important contributions to geodesy and geography were also made by al-Biruni.
He introduced techniques to measure the earth and distances on it using triangulation.
He found the radius of the earth to be 6339.6 km, a value not obtained in the West until
the 16th century. His Masudic canon contains a table giving the coordinates
of six hundred places, almost all of which he had direct knowledge. Not all, however,
were measured by al-Biruni himself, some being taken from a similar table given by
al-Khwarizmi. al-Biruni seemed to realise that for places
given by both_al-Khwarizmi and_Ptolemy, the value obtained by al-Khwarizmi is the
more accurate. Al-Biruni also wrote a treatise on time-keeping, wrote several treatises on
the astrolabe and describes a mechanical calendar. He makes interesting observations on
the velocity of light, stating that its velocity is immense compared with that of sound.
He also describes the Milky Way as

... a collection of countless fragments of the nature of nebulous stars.




Gauss and Riemann.

The geometry of surfaces, especially the “intrinsic” geometry of
surfaces, those properties of surfaces which are independent of how
they are embedded in Euclidean space, was developed by Gauss. But
the full higher dimensional notion of intrinsic geometry of a possibly
curved space was developed by his student Riemann. The equations for
geodesics as curves which locally minimize arc length plays a key role
in this theory. It was Riemann’s theory of the curvature of such spaces
which played a key role in Einstein’s theory of general relativity.



Johann Carl Friedrich Gauss

Born: 30 April 1777 in Brunswick, Duchy of Brunswick (now Germany)
Died: 23 Feb 1855 in Gottingen, Hanover (now Germany)



Georg Friedrich Bernhard Riemann

Born: 17 Sept 1826 in Breselenz, Hanover (now Germany)
Died: 20 July 1866 in Selasca, Italy



Parallelism along curves.

Can we attach a meaning to the assertion that two vectors tangent to
the sphere at two different points p and q are parallel? The answer to
this question 1s no . However it does make sense if we join p to q by
a curve: Let ¢ be a curve on the sphere which starts at p and ends
at q . Place the sphere on a plane so that it just touches the plane at p.
If u 1s a vector tangent to the sphere at p we can also think of u as
being a vector U 1in the plane, since this plane is tangent to the
sphere at p . Now roll the sphere on the plane along the curve ¢ . This
will give us a curve C 1in the plane, and at the end of this process we
end up with the point q touching the plane. A tangent vector v at (
can be thought of as being a vector V in the plane.

We say that u and v are parallel along c¢ if the vectors U and V
are parallel in the plane. This notion of parallelism depends on the
choice of the curve. A different curve joining p to q will give a
different criterion for when vectors at p and q are parallel.



Geodesics as self-parallel curves.

We now can define geodesics to be self-parallel curves - curves ¢
which have the property that when you perform the rolling process
the curve C that you get in the plane is a (piece of) a straight line.
For the sphere, the curves ¢ which roll out to straight lines in the
plane are exactly the great circles. But we can make this definition
for any curve on any surface.

It is then a mathematical theorem that this definition of geodesics, as
curves which roll out to straight lines, coincides with the earlier
definition of geodesics as curves which locally minimize arc length.



What about more general spaces such as those considered by Riemann?
Here the key result is due to Levi-Civita who introduced a general
concept of parallelism of vectors along curves and showed that

for a Riemannian manifold there is a unique such notion with

certain desirable properties, and that the self-parallel curves are exactly

the geodesics in Riemann’s sense.



Tullio Levi-Civita

Born: 29 March 1873 in Padua, Veneto, Italy
Died: 29 Dec 1941 in Rome, Italy



Back to the EIH paper again.

Introduction. In this paper we investigate the fundamentally simple ques-
tion of the extent to which the relativistic cquations of gravitation determine
the motion of ponderable bodies.

The question is: what do the “relativistic equations of gravitation”
have to do with the equations which determine geodesics? In order to
understand the EIH-Souriau answer to this question, we really do not
need to know in detail what the “relativistic equations of gravitation”
are. (This would require a whole course in general relativity.) All that
we need to know 1s something very general about the form of these
equations, in particular the symmetry which is built in to these
equations. It 1s an amazing fact that these symmetry conditions
alone determine the equations for geodesics.

For this we need to state some elemenary facts about constraints
imposed by symmetry.



Constraints imposed by
symmetry.

/\

Here is an equilateral triangle. If | want to attach an object,
say a little disk e to one of the corners of this triangle, and
still preserve the symmetry, then | must attach an identical
object to all three corners.

JAN




If | want to place a little red disk e on one of the sides of the
triangle and still maintain the complete symmetry, | must
also place the same disk at all points (in general six of them)
which can be obtain from this point by a symmetry
transformation of the triangle.



X and gx.

£\

Let g denote the symmetry transformation consisting of
flipping the triangle around the vertical axis. If x is a point
of the triangle, then gx denotes the point obtained from x

by applying the symmetry operation g to x:

i/\<k




Orbits.

There are six symmetry operations of the triangle: flipping
around each of the three perpendicular bisectors and
rotations about the center through 0 degrees, 120 degrees

and 240 degrees.

The set of all points that | obtain from a single point x by
applying all the symmetry operations to x is called the
orbit through x and is denoted by Gx. Typically there
will be six points in an orbit.

£



Exceptional orbits.

/\

But there will be some orbits with three elements, for
example the orbits of the vertices, or more generally orbits
of points lying on one of the perpendicular bisectors, and
there is an orbit with only one point - the center of the

triangle.
/J\




General formulation.

Suppose that X 1is a set (or object) and G 1s a group of
symmetries of X. If x isapointof X and g in G isa
symmetry, then we let gx denote the point of X obtained
from x by applying the symmetry g. We let Gx denote the
collection of all such points gx and call Gx the orbit of x
under the symmetries G.

Then if F 1s a (say) numerical function on X which is
invariant under the action of G, then F must take on a
constant value on each orbit.



Example: Rotations.

Suppose that X 1s ordinary three dimensional space with a
preferred point O as origin, and G consists of all rotations
about O . If x is a point different from O then the orbit Gx is
the sphere of radius r where r 1is the distance from O tox. If
x = O then the orbit Gx consists of the single point O . So the
orbits are spheres centered about O with the exception of the
single orbit consisting of one point O . Notice that in this
example the (sphere) orbits each form a continuous manifold of
points rather than a discrete collection of points as in the
preceding examples.

Our symmetry conserving condition says that if F 1s a function
which 1s invariant under G then F must be constant on each of
these spheres.



Orbits of the rotation group are
concentric spheres.



Here 1s a picture of a function F (the intensity of the blue) which
1s constant along each curve in a family. We wish to examine the
infinitesimal change in F (or as we say the differential (change)
of F) at any point.



The infinitesimal change ¢ of F
vanishes on tangents to the orbits.




Another picture




Repeat of statement:

Suppose that 7 is a group of symmetries of a space
X and suppose that F' i1s a function on X which is
invariant under the action of G. Let x be a point of
X, and let O = G - x be the &G orbit through z. Let
1,0 denote the tangent space to O at x. Then if

dF, =¥
denotes the differential of F' at  then

¢ vanishes on 1,0.



The punch line: The EIHS
equations for a geodesic.

We now come to the punch line of today’s lecture: For
an appropriate choice of X and &, we can associate to
certain data along a curve c (in technical language - a
contravariant symmetric tensor field along the curve)
an ¢, that is an object which measures infinitesimal
change of a function, and the condition

¢ vanishes on 1,0

implies that the curve must be a geodesic!.



The punch line continued: the
form of the field equations

Furthermore, the distribution of matter energy in
space time can be thought of itself as an / and for
appropriate choice of the function F' the equation

di, =1

thought of as an equation for x given / is in fact the
Einstein field equations for determining the geometry
of space time from the distribution of matter energy.



Some technical details.

At this point I have to get a little technical. Let
M be a manifold. Let X denote the set of all semi-
Riemannian metrics on M of a given signature. (For
example M could be space time and X the set of all
Lorentzian metrics on M.) We will let G be the group
of diffeomorphisms of compact support on M. (So an
element of ¢ will be a diffeomorphism of M which
equals the identity outside some compact subset of
M.) An element ¢ € G acts on a metric x by sending
it into (¢~ !)*x. This gives an action of G on X.



The full tangent space.

The full tangent space T, X can be identified with
the space Ss(X) of smooth symmetric covariant ten-
sor fields of degree 2. Notice that we have identified
all tangent spaces with the same fixed vector space.
We have trivialized the tangent bundle to X. We want
to consider the subspace SY(X) C So(X) consisting of
those smooth tensor fields of compact support. The
corresponding subspace of T,.X will be denoted by
TYX. It is to be thought of as those infinitesimal
rariations of the metric x which vanish outside some
compact subset.



The tangent space to the orbit.
How should we think of T,.O7 If u is a vector field
on M, then differential geometry attaches a meaning
to D, x, the Lie derivative of the metric x with respect
to the vector field w. It is the symmetric covariant
two tensor whose value D, x(v,w) on two other vector
fields v and w is defined as follows:

Dyx(v,w) = u(v,w), — (lu,v],w), — (v, |[u, w|),,

Here (v, w), denotes the scalar product of v and w (a
function on M) determined by the metric .

Since G consists of diffeomorphisms of compact
support, we let 1.0 consist of those D, r where u is
a vector field of compact support. Clearly

7.0 cTVX.



Possible /s .

What are the possible £’s?7 We want an ¢ to be
a (continuous) linear function on SY(AM). (This is
where the theory of generalized functions comes in.)
For example, suppose that 7 is smooth contravariant
symmetric 2-tensor. Then if o is a symmetric co-
rariant 2 tensor of compact support, then the double
contraction

oeT

is a smooth function of compact support on M. The
metric x determines a volume vol, and we can inte-
orate the function o e 7 with respect to this volume.



aJgeT

1s a smooth function of compact support on M. The
metric  determines a volume vol, and we can inte-
grate the function o e 7 with respect to this volume.
That is we can form the integral

/ ogeT vol,.
M

In this way, which depends on the metric x, we have
associated to 7 a continuous linear function ¢- on

X
V(o) = / oeT vol,.
M



Here is a different kind of ¢, one associated to a
curve: Let I be a (compact) interval on the real line
and ¢ : I — M a smooth non-degenerate curve on M.
Let 7 be a smooth tensor field along c¢. This means
that 7(s) is a contravariant two tensor at the point
c(s). (We will assume that 7(s) # 0 for any s.) If o
Is a symmetric covariant 2 tensor then

o(c(s)) o 7(s)

is a smooth function of s and we can form the integral

/ o (c(s)) » 7(s)ds.

I



An /. ; associated to a curve c.
o(c(s)) e7(s)

1s a smooth function of s and we can form the integral

/ o (c(s)) » (s)ds.

I

So the pair consisting of the curve ¢ and the tensor
field 7 along ¢ gives rise to a continuous linear func-

tion £¢. on TV (X) by

I



The main result.
We can now state the main result of EIH as refor-
mulated by Souriau: If /. (o) satisfies the condition

lc (o) vanishes on 1,0

then up to a suitable reparametrization of ¢, the curve
c is a geodesic and

7(s) = +c'(s) @ c'(s)

where ¢’ denotes the tangent vector to c.

The proof of this result is by a certain amount of integration by
parts which I will omit.



The Hilbert “function”.

For any metric x, let S(z) denote the scalar cur-
vature of z. Try to define the “function” F'(x) by

F(z)=— / S(x)vol, .
M

The trouble is that this integral may not be defined
since M, in general, is not compact.



The variation is defined.

Nevertheless, the variation
dF, (o)

for 0 € TYX is well defined since we may replace
integration over M by integration over any compact
subset /X containing the support of o and then define

d
dF, (o) = —— /F S(x +to)vol, 4o

=0

This clearly does not depend of the choice of K.



The Einstein-Hilbert field
equations.

Suppose that £ is a linear function on S5 (M) cor-
responding to a smooth tensor field in some (and
hence every) metric. The Einstein-Hilbert field equa-
tions for the metric x are the equations

dF, = (.

We know that a necessary condition for the solvability
of these equations is

¢ vanishes on 1..0.



Passivity.

Suppose we replace ¢ by £ + /' where (say) ¢’ is
a smooth approximation to f.,. Then we get, in
principle, a different z’ as a solution to

dF, =+

and hence also a different orbit O'. The “passivity
approximation” that | stated in the first slide says
that we will ignore this change in z and hence assume

the necessary condition

:' " vanishes on 1..Q.
(+ ¢ h 1.0



{ + ¢" vanishes on T,.O.
Since this condition is linear, and we know that
¢ vanishes on 1.,.O
we conclude that
¢" vanishes on 1,0
and hence (in the limit) that

le

. vanishes on 1,0

and so c is a geodesic. This is the E-I-H solution to
their “fundamentally simple question”.



The Schrodinger equation.

I will illustrate the “integration by parts” argu-
ment that I omitted, by studying an analogue of this
procedure in a finite dimensional model of “quantum
mechanics”. Let V' be a finite dimensional vector
space and let G = GI(V') be the group of all invert-
ible linear transformations of V. Let X be the space
of all linear transformations of V' with G acting on X
by conjugation:

g T .= g;rg_l.



g T .= g;rg_l.

The tangent space to the orbit O through = consists
of all [x,y| as y varies over X. Since X is a vector
space, we can identity 1,.X with X for every z. We
can also identify the space of linear functions on X
with X using the trace: If z € X define

(. (w) = trzw.

Every linear function on X is of this form. The con-
dition
(. vanishes on 1.,.0

becomes
trzlz.yl =0 VyeX.



The “integration by
parts”’argument.

trzlz,yl =0 VyelX.

But

tr zyr = traxzy

SO
trz|z, y| = trz(xy — yx) = tr(ze — x2)y = tr|z, z]y.

*

(This was the “integration by parts”.)



The condition tr|z.z|y = 0 for all y implies that
iz, z| = 0. So the condition

(. vanishes on 1.,.0

1S

x,z] =0

in the current example.



Suppose we look at a special kind of z (like we
considered the special ( associated to a curve in the
general relativity case). Suppose that z is of rank one,
so maps the entire space V onto the line through a
vector v. Then the above condition implies that v is
an eigenvector of X:

TU = AU

for some A.
To write this in more familiar notation replace the

letter x by the letter H . We obtain

Ho = \o.



To write this in more familiar notation replace the
letter by the letter H . We obtain

Ho = \ob.
So the condition
¢ vanishes on 1.0

together with the assumption that we are looking at a
special kind of £, one corresponding to a rank one op-
erator gives Schrodinger’s equation. We have derived
Schrodinger’s from the same principle which gave us
the equation for geodesics!



