4. Poisson Processes

4.1 Definition

4.2 Derivation of exponential distribution
4.3 Properties of exponential distribution
a. Normalized spacings
b. Campbell's Theorem
c. Minimum of several exponential random variables
d. Relation to Erlang and Gamma Distribution
e. Guarantee Time
f. Random Sums of Exponential Random Variables
4.4 Counting processes and the Poisson distribution
4.5 Superposition of Counting Processes
4.6 Splitting of Poisson Processes
4.7 Non-homogeneous Poisson Processes
4.8 Compound Poisson Processes

4 Poisson Processes

4.1 Definition

Consider a series of events occurring over time, i.e.

Define T_{i} as the time between the $(i-1)^{s t}$ and $i^{t h}$ event. Then

$$
S_{n}=T_{1}+T_{2}+\ldots+T_{n}=\text { Time to } n^{\text {th }} \text { event. }
$$

Define $N(t)=$ no. of events in $(0, t]$.
Then

$$
P\left\{S_{n}>t\right\}=P\{N(t)<n\}
$$

If the time for the $n^{t h}$ event exceeds t, then the number of events in $(0, t]$ must be less than n.

$$
\begin{gathered}
P\left\{S_{n}>t\right\}=P\{N(t)<n\} \\
p_{t}(n)=P\{N(t)=n\} \quad=P\{N(t)<n+1\}-P\{N(t)<n\} \\
=P\left\{S_{n+1}>t\right\}-P\left\{S_{n}>t\right\} \\
\text { where } \quad S_{n}=T_{1}+T_{2}+\ldots+T_{n} .
\end{gathered}
$$

Define $Q_{n+1}(t)=P\left\{S_{n+1}>t\right\}, Q_{n}(t)=P\left\{S_{n}>t\right\}$
Then we can write

$$
p_{t}(n)=Q_{n+1}(t)-Q_{n}(t)
$$

and taking LaPlace transforms

$$
p_{s}^{*}(n)=Q_{n+1}^{*}(s)-Q_{n}^{*}(s)
$$

If $q_{n+1}(t)$ and $q_{n}(t)$ are respective pdf's.

$$
Q_{n+1}^{*}(s)=\frac{1-q_{n+1}^{*}(s)}{s}, Q_{n}^{*}(s)=\frac{1-q_{n}^{*}(s)}{s}
$$

and

$$
p_{s}^{*}(n)=\frac{1-q_{n+1}^{*}(s)}{s}-\frac{1-q_{n}^{*}(s)}{s}=\frac{q_{n}^{*}(s)-q_{n+1}^{*}(s)}{s}
$$

Recall T_{1} is time between 0 and first event, T_{2} is time between first and second event, etc.

Assume $\left\{T_{i}\right\} i=1,2, \ldots$ are independent and with the exception of $i=1$, are identically distributed with pdf $q(t)$. Also assume T_{1} has pdf $q_{1}(t)$. Then

$$
q_{n+1}^{*}(s)=q_{1}^{*}(s)\left[q^{*}(s)\right]^{n}, q_{n}^{*}(s)=q_{1}^{*}(s)\left[q^{*}(s)\right]^{n-1}
$$

and

$$
p_{s}^{*}(n)=\frac{q_{n}^{*}(s)-q_{n+1}^{*}(s)}{s}=q_{1}^{*}(s) q^{*}(s)^{n-1}\left[\frac{1-q^{*}(s)}{s}\right]
$$

Note that $q_{1}(t)$ is a forward recurrence time. Hence

$$
\begin{gathered}
q_{1}(t)=\frac{Q(t)}{m} \text { and } q_{1}^{*}(s)=\frac{1-q^{*}(s)}{s m} \\
p_{s}^{*}(n)=\frac{q^{*}(s)^{n-1}}{m}\left[\frac{1-q^{*}(s)}{s}\right]^{2}
\end{gathered}
$$

Assume $q(t)=\lambda e^{-\lambda t} \quad$ for $t>0 \quad(m=1 / \lambda)$

$$
=0 \quad \text { otherwise }
$$

Then $\quad q^{*}(s)=\lambda / \lambda+s, \quad \frac{1-q^{*}(s)}{s}=1 /(\lambda+s)$
and $\quad p_{s}^{*}(n)=\left(\frac{\lambda}{\lambda+s}\right)^{n-1}\left(\frac{1}{\lambda+s}\right)^{2} \lambda=\frac{1}{\lambda}(\lambda / \lambda+s)^{n+1}$.

$$
p_{s}^{*}(n)=\frac{1}{\lambda}(\lambda / \lambda+s)^{n+1}
$$

However $(\lambda / \lambda+s)^{n+1}$ is the LaPlace transform of a gamma distribution with parameters $(\lambda, n+1)$ i.e.

$$
f(t)=\frac{e^{-\lambda t}(\lambda t)^{n+1-1} \lambda}{\Gamma(n+1)} \text { for } t>0
$$

$$
\therefore p_{t}(n)=\mathcal{L}^{-1}\left\{p_{s}^{*}(n)\right\}=\frac{e^{-\lambda t}(\lambda t)^{n}}{n!}
$$

which is the Poisson Distribution. Hence $N(t)$ follows a Poisson distribution and

$$
\begin{gathered}
P\{N(t)<n\}=\sum_{r=0}^{n-1} p_{t}(r)=P\left\{S_{n}>t\right\} \\
P\left\{S_{n}>t\right\}=\sum_{r=0}^{n-1} \frac{e^{-\lambda t}(\lambda t)^{r}}{r!}
\end{gathered}
$$

We have shown that if the times between events are iid following an exponential distribution the $N(t)$ is Poisson with $E[N(t)]=\lambda t$.

Alternatively if $N(t)$ follows a Poisson distribution, then S_{n} has a gamma distribution with pdf $f(t)=\frac{e^{-\lambda t}(\lambda t)^{n-1} \lambda}{\Gamma(n)}$ for $t>0$.

This implies time between events are exponential.
Since $P\left\{S_{n}>t\right\}=P\{N(t)<n\}$ we have proved the identity

$$
P\left\{S_{n}>t\right\}=\int_{t}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{n-1} \lambda}{\Gamma(n)} \lambda d x=\sum_{r=0}^{n-1} \frac{e^{-\lambda t}(\lambda t)^{r}}{r!}
$$

This identity is usually proved by using integration by parts.
When $N(t)$ follows a Poisson distribution with $E[N(t)]=\lambda t$, the set $\{N(t), t>0\}$ is called a Poisson Process.

4.2 Derivation of Exponential Distribution

Define $\quad P_{n}(h)=$ Prob. of n events in a time interval h
Assume
$P_{0}(h)=1-\lambda h+o(h) ; \quad P_{1}(h)=\lambda h+o(h) ; \quad P_{n}(h)=o(h)$ for $n>1$
where $o(h)$ means a term $\psi(h)$ so that $\lim _{h \rightarrow 0} \frac{\psi(h)}{h}=0$. Consider a finite time interval $(0, t)$. Divide the interval into n sub-intervals of length h. Then $t=n h$.

The probability of no events in $(0, t)$ is equivalent to no events in each sub-interval; i.e.

$$
\begin{gathered}
P_{n}\{T>t\}=P\{\text { no events in }(0, t)\} \\
T=\text { Time for } 1^{\text {st }} \text { event }
\end{gathered}
$$

Suppose the probability of events in any sub interval are independent of each other. (Assumption of independent increments.) Then

$$
\begin{gathered}
P_{n}\{T>t\}=[1-\lambda h+o(h)]^{n}=\left[1-\frac{\lambda t}{n}+o(h)\right]^{n} \\
=\left(1-\frac{\lambda t}{n}\right)^{n}+n o(h)\left(1-\frac{\lambda t}{n}\right)^{n-1}+\ldots
\end{gathered}
$$

Since

$$
\lim _{n \rightarrow \infty}\left(1-\frac{\lambda t}{n}\right)^{n}=e^{-\lambda t}
$$

and

$$
\lim _{n \rightarrow \infty} n o(h)=\lim _{h \rightarrow 0} \frac{t}{h} o(h)=0
$$

We have $P\{T>t\}=\lim _{h \rightarrow 0} P_{n}\{T>t\}=e^{-\lambda t}$.
\therefore The pdf of T is $-\frac{d}{d t} P\{T>t\}=\lambda e^{-\lambda t}$. (Exponential Distribution)

4.3 Properties of Exponential Distribution

$$
\begin{aligned}
& q(t)=\lambda e^{-\lambda t} \quad t>0 \\
& E(T)=1 / \lambda=m, \quad V(t)=1 / \lambda^{2}=m^{2} \\
& q^{*}(s)=\lambda / \lambda+s
\end{aligned}
$$

Consider $r<t$.
Then

$$
\begin{aligned}
& P\{T>r+t \mid T>r\}=\text { Conditional distribution } \\
& \quad=\frac{Q(r+t)}{Q(r)}=\frac{e^{-\lambda(r+t)}}{e^{-\lambda r}}=e^{-\lambda t}
\end{aligned}
$$

i.e. $P\{T>r+t \mid T>r\}=P\{T>t\}$ for all r and t.

Also $P\{T>r+t\}=e^{-\lambda(r+t)}=Q(r) Q(t)=Q(r+t)$
Exponential distribution is only function satisfying $Q(r+t)=Q(r) Q(t)$

Proof:

$$
\begin{gathered}
Q\left(\frac{2}{n}\right)=Q\left(\frac{1}{n}\right)^{2} \text { and in general } Q\left(\frac{m}{n}\right)=Q\left(\frac{1}{n}\right)^{m} \\
Q(1)=Q\left(\frac{1}{n}+\frac{1}{n}+\ldots+\frac{1}{n}\right)=\left[Q\left(\frac{1}{n}\right)\right]^{n}, \quad m=n \\
\therefore Q\left(\frac{m}{n}\right)=\left[Q\left(\frac{1}{n}\right)^{n}\right]^{m / n}=Q(1)^{m / n}
\end{gathered}
$$

If $Q(\cdot)$ is continuous or left or right continuous we can write

$$
Q(t)=Q(1)^{t}
$$

Since $Q(1)^{t}=e^{t \log Q(1)}$ we have $\log Q(1)$ is the negative of the rate parameter. Hence

$$
Q(t)=e^{-\lambda t} \quad \text { where } \lambda=-\log Q(1)
$$

a. Normalized Spacings

Let $\left\{T_{i}\right\} i=1,2, \ldots, n$ be iid following an exponential distribution with $E\left(T_{i}\right)=1 / \lambda$.
Define $\quad T_{(1)} \leq T_{(2)} \leq \ldots \leq T_{(n)} \quad$ Order statistics

Then the joint distribution of the order statistics is

$$
\begin{gathered}
f\left(t_{(1)}, t_{(2)}, \ldots, t_{(n)}\right) d t_{(1)}, t_{(2)}, \ldots t_{(n)}=P\left\{t_{(1)}<T_{(1)}, \leq t_{(1)}+d t_{(1)}, \ldots\right\} \\
=\frac{n!}{1!1!\ldots 1!} \\
=n!\lambda e^{-\lambda t_{(1)}} \cdot \lambda e^{-\lambda t_{(2)}} \ldots \lambda e^{-\lambda t_{(n)}} d t_{(1)} \ldots d t_{(n)} \\
f\left(t_{(1)}, \ldots, t_{(n)}\right)=n!\lambda^{n} e^{-\lambda \sum_{1}^{n} t_{(i)}}=n!\lambda^{n} e^{-\lambda S}
\end{gathered}
$$

where $S=\sum_{1}^{n} t_{(i)}=\sum_{1}^{n} t_{i}, \quad 0 \leq t_{(1)} \leq \ldots \leq t_{(n)}$

$$
\begin{aligned}
f\left(t_{(1)}, \ldots, t_{(n)}\right) & =n!\lambda^{n} e^{-\lambda S}, 0 \leq t_{(1)} \leq \ldots \leq t_{(n)} \\
S & =\sum_{1}^{n} t_{(i)}
\end{aligned}
$$

Consider

$$
\begin{gathered}
Z_{1}=n T_{(1)}, \quad Z_{2}=(n-1)\left(T_{(2)}-T_{(1)}\right), \cdots \\
Z_{(i)}=(n-i+1)\left(T_{(i)}-T_{(i-1)}\right), \cdots, Z_{(n)}=T_{(n)}-T_{(n-1)}
\end{gathered}
$$

We shall show that $\left\{Z_{i}\right\}$ are iid exponential.

$$
f\left(Z_{1}, Z_{2}, \ldots, Z_{n}\right)=f\left(t_{(1)}, \ldots, t_{(n)}\right)\left|\frac{\partial\left(t_{(1)}, \ldots, \partial t_{(n)}\right)}{\partial\left(Z_{1}, \ldots, Z_{n}\right)}\right|
$$

where $\left|\frac{\partial\left(t_{(1)}, \ldots, t_{(n)}\right)}{\partial\left(Z_{1}, \ldots, Z_{n}\right)}\right|$ is the determinant of the Jacobian.

We shall find the Jacobian by making use of the relation

$$
\begin{gathered}
\left|\frac{\partial\left(t_{(1)}, \ldots, \partial t_{(n)}\right)}{\partial\left(Z_{1}, \ldots, Z_{n}\right)}\right|=\left|\frac{\partial\left(Z_{1}, Z_{2}, \ldots Z_{n}\right)}{\left.\partial t_{(1)}, \ldots, t_{(n)}\right)}\right|^{-1} \\
Z_{i}=(n-i+1)\left(T_{(i)}-T_{(i-1)}\right), \quad T_{(0)}=0 \\
\frac{\partial Z_{i}}{\partial T_{(j)}}= \begin{cases}n-i+1 & j=i \\
-(n-i+1) & j=i-1 \\
0 & \text { Otherwise }\end{cases}
\end{gathered}
$$

$$
\frac{\partial\left(Z_{1}, \ldots, Z_{n}\right)}{\partial\left(t_{(1)}, \ldots, t_{(n)}\right.}=\left[\begin{array}{llllll}
n & 0 & 0 & 0 & \ldots & 0 \\
-(n-1) & (n-1) & 0 & 0 & \ldots & 0 \\
0 & -(n-2) & (n-2) & 0 & \ldots & 0 \\
\vdots & & & & & \\
0 & 0 & \ldots & \ldots & -1 & 1
\end{array}\right]
$$

Note: The determinant of a trangular matrix is the product of the main diagonal terms

$$
\therefore\left|\frac{\partial\left(Z_{1}, \ldots, Z_{n}\right)}{\partial\left(t_{(1)}, \ldots, t_{(n)}\right)}\right|=n(n-1)(n-2) \ldots 2 \cdot 1=n!
$$

and

$$
\begin{aligned}
& \quad f\left(z_{1}, z_{2}, \ldots, z_{n}\right)=n!\lambda^{n} e^{-\lambda S} \frac{1}{n!}=\lambda^{n} e^{-\lambda \sum_{1}^{n} z_{i}}=\lambda^{n} e^{-\lambda S} \\
& \text { as } S=\sum_{i=1}^{n} t_{(i)}=z_{1}+\ldots+z_{n} .
\end{aligned}
$$

The spacings $Z_{i}=(n-i+1)\left(T_{(i)}-T_{(i-1)}\right)$ are sometimes called normalized spacings.

Homework:

1. Suppose there are n observations which are iid
exponential $\left(T_{i}=1 / \lambda\right)$. However there are r non-censored observations and $(n-r)$ censored observations all censored at $t_{(r)}$. Show $Z_{i}=(n-i+1)\left(T_{(i)}-T_{(i-1)}\right)$ for $i=1,2, \ldots, r$ are iid exponential.
2. Show that

$$
T_{(i)}=\frac{Z_{1}}{n}+\frac{Z_{2}}{n-1}+\ldots+\frac{Z_{i}}{n-i+1}
$$

and prove

$$
E\left(T_{(i)}\right)=\frac{1}{\lambda} \sum_{j=1}^{i} \frac{1}{n-j+1}
$$

Find variances and covariances of $\left\{T_{(i)}\right\}$.
b. Campbell's Theorem

Let $\{N(t), t>0\}$ be a Poisson Process. Assume n events occur in the interval $(0, t]$. Note that $N(t)=n$ is the realization of a random variable and has probability $P\{N(t)=n\}=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!}$
Define $W_{n}=$ Waiting time for $n^{t h}$ event.
If $\left\{T_{i}\right\} i=1,2, \ldots, n$ are the random variables representing the time between events

$$
f\left(t_{1}, \ldots, t_{n}\right)=\Pi_{1}^{n} \lambda e^{-\lambda t_{i}}=\lambda^{n} e^{-\lambda \sum_{1}^{n} t_{i}}
$$

But $\sum_{1}^{n} t_{i}=W_{n}$, hence

$$
f\left(t_{1}, \ldots, t_{n}\right)=\lambda^{n} e^{-\lambda W_{n}}
$$

$$
f\left(t_{1}, \ldots, t_{n}\right)=\lambda^{n} e^{-\lambda W_{n}}
$$

Now consider the transformation

$$
W_{1}=t_{1}, \quad W_{2}=t_{1}+t_{2}, \ldots, \quad W_{n}=t_{1}+t_{2}+\ldots+t_{n}
$$

The distribution of $\underline{\mathbf{W}}=\left(W_{1}, W_{2}, \ldots, W_{n}\right)$ is

$$
f(\underline{\mathbf{W}})=f(\underline{\mathbf{t}})\left|\frac{\partial(\underline{\mathbf{t}})}{\partial \underline{\mathbf{W}}}\right|
$$

where $\left|\frac{\partial(\underline{\mathbf{t}})}{\partial \underline{\mathbf{W}}}\right|$ is the determinant of the Jacobian.

Note: $\frac{\partial(\underline{\mathbf{W}})}{\partial \underline{\mathbf{t}}}=\left(\begin{array}{cccccc}1 & 0 & 0 & 0 & \ldots & 0 \\ 1 & 1 & 0 & 0 & \ldots & 0 \\ 1 & 1 & 1 & 0 & \ldots & 0 \\ 1 & 1 & 1 & 1 & \ldots & 0 \\ \vdots & & & & & \\ 1 & 1 & 1 & 1 & \ldots & 1\end{array}\right)$
and $\left|\frac{\partial(\underline{\mathbf{t}})}{\partial \underline{\mathbf{W}}}\right|=\left|\frac{\partial(\underline{\mathbf{W}})}{\partial \underline{\mathbf{t}}}\right|^{-1}=1$
$\therefore \quad f\left(w_{1}, \ldots, w_{n}\right)=\lambda^{n} e^{-\lambda w_{n}} \quad 0<w_{1} \leq \ldots \leq w_{n}<t$.
But there are no events in the interval ($\left.w_{n}, t\right]$. This carries probability $e^{-\lambda\left(t-w_{n}\right)}$. Hence the joint distribution of the $\underline{\mathbf{W}}$ is

$$
f(\underline{\mathbf{W}})=\lambda^{n} e^{-\lambda w_{n}} \cdot e^{-\lambda\left(t-w_{n}\right)}=\lambda^{n} e^{-\lambda t}
$$

$$
f(\underline{\mathbf{W}})=\lambda^{n} e^{-\lambda t} \quad 0 \leq w_{1} \leq w_{2} \leq \ldots \leq w_{n}<t
$$

Consider

$$
f(\underline{\mathbf{W}} \mid N(t)=n)=\frac{\lambda^{n} e^{-\lambda t}}{e^{\lambda t}(\lambda t)^{n} / n!}=n!/ t^{n}
$$

This is the joint distribution of the order statistics from a uniform
$(0, t)$ distribution; i.e., $f(x)=\frac{1}{t} \quad 0<x \leq t$.
Hence $E\left(W_{i} \mid N(t)=n\right)=\frac{i t}{n+1} \quad i=1,2, \ldots, n$
We can consider the unordered waiting times, conditional on $N(t)=n$, as following a uniform $(0, t)$ distribution.

Since $w_{1}=t_{1}, w_{2}=t_{1}+t_{2}, \ldots, w_{n}=t_{1}+t_{2}+\ldots+t_{n}$

$$
t_{i}=w_{i}-w_{i-1} \quad\left(w_{0}=0\right)
$$

The difference between the waiting times are the original times t_{i}. These times follow the distribution conditional on $N(t)=n$; i.e.

$$
f\left(t_{1}, \ldots, t_{n} \mid N(t)=n\right)=n!/ t^{n}
$$

Note that if $f\left(t_{i}\right)=1 / t \quad 0<t_{i}<t$, the joint distribution for $i=1,2, \ldots, n$ of n independent uniform $(0, t)$ random variables is $f(\underline{\mathbf{t}})=1 / t^{n}$. If $0<t_{(1)} \leq t_{(2)} \leq \ldots \leq t_{(n)}<t$ the distribution of the order statistics is

$$
f\left(t_{(1)}, \ldots, t_{(n)}\right)=n!/ t^{n}
$$

which is the same as $f\left(t_{1}, \ldots, t_{n} \mid N(t)\right)$.

c. Minimum of Several Exponential Random Variables

Let $T_{i}(i=1, \ldots, n)$ be ind. exponential r.v. with parameter λ_{i} and let $T=\min \left(T_{1}, \ldots, T_{n}\right)$
$\rightarrow P\{T>t\}=P\left\{T_{1}>t, T_{2}>t, \ldots, T_{n}>t\right\}=\pi_{i=1}^{n} P\left\{T_{i}>t\right\}$

$$
=\pi_{i=1}^{n} e^{-\lambda_{i} t}=e^{-\lambda t}, \quad \lambda=\sum_{1}^{n} \lambda_{i}
$$

$\rightarrow T$ is exponential with parameter λ

$$
\begin{gathered}
P\{T>t\}=e^{-\lambda t} \quad \lambda=\sum_{i=1}^{n} \lambda_{i} \\
T=\min \left(T_{1}, \ldots, T_{n}\right)
\end{gathered}
$$

If all $\lambda_{i}=\lambda_{0}, \lambda=n \lambda_{0}, \quad P\{T>t\}=e^{-n \lambda_{0} t}$

Define N as the index of the random variable which is the smallest failure time.

For example if $T_{r} \leq T_{i}$ for all i, then $N=r$.
Consider $P\left\{T>t, T_{r} \leq T_{i}\right.$ all $\left.i\right\}=P\{N=r, T>t\}$

$$
\begin{aligned}
P\{N=r, T>t\} & =P\left\{T>t, T_{i} \geq T_{r}, i \neq r\right\} \\
& =\int_{t}^{\infty} P\left\{T>t_{r}, i \neq r \mid t_{r}\right\} f\left(t_{r}\right) d t_{r} \\
& =\int_{t}^{\infty} e^{-\left(\lambda-\lambda_{r}\right) t_{r}} \lambda_{r} e^{-\lambda_{r} t_{r}} d t_{r} \\
& =\lambda_{r} \int_{t}^{\infty} e^{-\lambda t_{r}} d t_{r} \\
& =\frac{\lambda_{r}}{\lambda} e^{-\lambda t}
\end{aligned}
$$

$$
P\{N=r, T>t\}=\frac{\lambda_{r}}{\lambda} e^{-\lambda t}
$$

$$
\begin{aligned}
& \quad P\{N=r, T>0\}=P\{N=r\}=\frac{\lambda_{r}}{\lambda}, \lambda=\sum_{1}^{n} \lambda_{i} \\
& \rightarrow P\{N=r, T>t\}=P\{N=r\} P\{T>t\} \\
& \rightarrow N \text { (index of smallest) and } T \text { are independent } \\
& \text { If } \lambda_{i}=\lambda_{0} \\
& \qquad P\{N=r\}=\frac{\lambda_{0}}{n \lambda_{0}}=\frac{1}{n}
\end{aligned}
$$

(All populations have the same prob. of being the smallest.)
D. Relation to Erlang and Gamma Distribution

Consider $T=T_{1}+\ldots+T_{n}$
Since $q_{i}^{*}(s)=\frac{\lambda_{i}}{\lambda_{i}+s}, q_{T}^{*}(s)=\prod_{i=1}^{n} \frac{\lambda_{i}}{\lambda_{i}+s}$
which is L.T. of Erlang distribution. If λ_{i} are all distinct

$$
\begin{gathered}
\square q(t)=\sum_{i=1}^{n} A_{i} e^{-\lambda_{i} t} \\
\text { If } \lambda_{i}=\lambda, \quad A_{i}=\prod_{j \neq i} \frac{\lambda_{i}}{\lambda_{j}-\lambda_{i}} \\
q(s)=\frac{\lambda(\lambda t)^{n-1} e^{-\lambda t}}{\Gamma(n)} \text { Gamma Distribution }
\end{gathered}
$$

E. Guarantee Time

Consider the r.v. following the distribution having pdf

$$
\begin{aligned}
q(t) & =\lambda e^{-\lambda(t-G)} & & \text { for } t>G \\
& =0 & & \text { for } t \leq G
\end{aligned}
$$

The parameter G is called a guarantee time
If the transformation $Y=T-G$ is made then $f(y)=\lambda e^{-\lambda y}$ for $y>0$.
$\therefore E(Y)=1 / \lambda, \quad V(Y)=1 / \lambda^{2}, \ldots$
Since $T=Y+G, E(T)=\frac{1}{\lambda}+G$
and central moments if T and Y are the same.

F. Random Sums of Exponential Random Variables

Let $\left\{T_{i}\right\} i=1,2, \ldots, N$ be iid with $f(t)=\lambda e^{-\lambda t}$ and consider

$$
S_{N}=T_{1}+T_{2}+\ldots+T_{N}
$$

with $P\{N=n\}=p_{n}$.
The Laplace Transform of S_{N} is $(\lambda / \lambda+s)^{n}$ for fixed $N=n$. Hence $f^{*}(s)=E\left(\frac{\lambda}{\lambda+s}\right)^{N}$ resulting in a pdf which is a mixture of gamma distributions.

$$
f(t)=\sum_{n=1}^{\infty} \frac{\lambda(\lambda t)^{n-1} e^{-\lambda t}}{\Gamma(n)} p_{n}
$$

Suppose $p_{n}=p^{n-1} q \quad n=1,2, \ldots$ (negative exponential distribution)

$$
\begin{aligned}
& f^{*}(s)= \sum_{n=1}^{\infty}\left(\frac{\lambda}{\lambda+s}\right)^{n} p^{n-1} q=\sum_{n=1}^{\infty} \frac{q}{p}\left(\frac{p \lambda}{\lambda+s}\right)^{n}=\frac{q}{p}\left[\frac{p \lambda / \lambda+s}{1-\frac{p \lambda}{\lambda+s}}\right] \\
&=\frac{q}{p} \cdot \frac{p \lambda}{s+\lambda(1-p)}=\frac{q \lambda}{s+q \lambda} \\
& f^{*}(s)=\frac{q \lambda}{s+q \lambda} \\
& \Rightarrow \quad S_{N}=T_{1}+T_{2}+\ldots+T_{N}, \quad P\{N=n\}=p^{n-1} q
\end{aligned}
$$

has exponential distribution with parameter (λq).

4.4 Counting Processes and the Poisson Distribution

Definition: A stochastic process $\{N(t), T>0\}$ is said to be a counting process where $N(t)$ denotes the number of events that have occurred in the interval $(0, t]$. It has the properties.
(i.) $\quad N(t)$ is integer value
(ii.) $N(t) \geq 0$
(iii.) If $s<t, \quad N(s) \leq N(t)$ and $N(t)-N(s)=$ number of events occurring is $(s, t]$.

A counting process has independent increments if the events in disjoint intervals are independent; i.e. $N(s)$ are $N(t)-N(s)$ are independent events.

A counting process has stationary increments if the probability of the number of events in any interval depends only on the length of the interval; i.e.

$$
N(t) \text { and } N(s+t)-N(s)
$$

have the same probability distribution for all s. A Poisson process is a counting process having independent and stationary
increments.

TH. Assume $\{N(t), t \geq 0\}$ is a Poisson Process. Then the dsitribution of $N_{s}(t)=N(s+t)-N(s)$ is independent of s and only depends on the length of the interval, i.e.

$$
P\{N(t+s)-N(s) \mid N(s)\}=P\{N(t+s)-N(s)\}
$$

for all s. This implies that knowledge of $N(u)$ for $0<u \leq s$ is also irrelevant.

$$
\begin{gathered}
P\{N(t+s)-N(s) \mid N(u), 0<u \leq s\} \\
=P\{N(t+s)-N(s)\}
\end{gathered}
$$

This feature defines a stationary process.

TH. A Poisson Process has independent increments.
Consider $0 \leq t_{1}<t_{2}<t_{3}<t_{4}$

Consider events in $\left(t_{3}, t_{4}\right]$; i.e.

$$
\begin{gathered}
N\left(t_{4}\right)-N\left(t_{3}\right) \\
P\left\{N\left(t_{4}\right)-N\left(t_{3}\right) \mid N(u), \quad o<u \leq t_{3}\right\} \\
=P\left\{N\left(t_{4}\right)-N\left(t_{3}\right)\right\}
\end{gathered}
$$

Distribution is independent of what happened prior to t_{3}. Hence if the intervals $\left(t_{1}, t_{2}\right]$ and $\left(t_{2}, t_{4}\right)$ are non-overlapping $N\left(t_{2}\right)-N\left(t_{1}\right)$ and $N\left(t_{4}\right)-N\left(t_{3}\right)$ are independent.

TH. $\operatorname{Cov}(N(t), N(s+t))=\lambda t$ (Poisson Process)

Proof $N(s+t)-N(t)$ is independent of $N(t)$

$$
\begin{aligned}
& \operatorname{Cov}(N(s+t)-N(t), N(t))=0 \\
& =\operatorname{Cov}(N(s+t), N(t))-V(N(t))=0 \\
& \therefore \operatorname{Cov}(N(s+t), N(t))=V(N(t))=\lambda t
\end{aligned}
$$

as variance of $N(t)$ is λt.
An alternative statement of theorem is

$$
\operatorname{Cov}(N(s), N(t))=\lambda \min (s, t)
$$

TH. A counting process $\{N(t), t \geq 0\}$ is a Poisson Process if and only if
(i) It has stationary and independent increments
(ii) $\mathrm{N}(0)=0$ and

$$
\begin{aligned}
P\{N(h)=0\} & =1-\lambda h+0(h) \\
P\{N(h)=1\} & =\lambda h+0(h) \\
P\{N(h)=j\} & =0(h), \quad j>1
\end{aligned}
$$

Notes: The notation $0(h)$ "little o of h' refers to some function $\varphi(h)$ for which

$$
\lim _{h \rightarrow 0} \frac{\varphi(h)}{h}=0
$$

Divide interval $(0, t]$ into \underline{n} sub-intervals of length h; i.e. $n h=t$

$$
P\{N(k h)-N(k-1) h)\}=P\{N(h)\}
$$

$$
\begin{aligned}
T & =\text { Time to event beginning at } t=0 \\
P\{T>t\} & =P\{N(t)=0\}=P\{\text { No events in each sub-interval }\} \\
P\{N(t)=0\} & =P\{T>t\}=[1-\lambda h+o(h)]^{n} \\
& =(1-\lambda h)^{n}+n(1-\lambda h)^{n-1} o(h)+o\left(h^{2}\right) \\
& =(1-\lambda h)^{n}\left\{1+\frac{n o(h)}{1-\lambda h}+\ldots\right\} \\
& =\left(1-\frac{\lambda t}{n}\right)^{n}\left\{1+\frac{t}{1-\frac{\lambda t}{n}} \frac{o(h)}{h}+\ldots\right\} \\
& \rightarrow e^{-\lambda t} \text { as } n \rightarrow \infty, h \rightarrow 0 \\
\Rightarrow & P\{T>t\}=e^{-\lambda t}
\end{aligned}
$$

Hence T is exponential; i.e. Time between events is exponential.

$$
\Rightarrow \quad\{N(t), t \geq 0\} \text { is Poisson Process }
$$

4.5 Superposition of Counting Processes

Suppose there are k counting processes which merge into a single counting process; e.g. $k=3$.

Process 1:

Process 2:

Process 3:

Merged Process:

The merged process is called the superposition of the individual counting processes

$$
N(t)=N_{1}(t)+N_{2}(t)+\ldots+N_{k}(t)
$$

A. Superposition of Poisson Processes

$$
N(t)=N_{1}(t)+\ldots+N_{k}(t)
$$

Suppose $\left\{N_{i}(t), t \geq 0\right\} i=1,2, \ldots, k$ are Poisson Processes with $E\left[N_{i}(t)\right]=\lambda_{i} t$.

Note that each of the counting processes has stationary and independent increments.

Also $N(t)$ is Poisson with parameter

$$
\begin{gathered}
E(N(t))=\sum_{i=1}^{k}\left(\lambda_{i} t\right)=t \lambda, \quad \lambda=\sum_{i=1}^{k} \lambda_{i} \\
\Rightarrow \quad N(t) \text { is a Poisson Process }
\end{gathered}
$$

Hence $\{N(t), t \geq 0\}$ has stationary and independent increments.

B. General Case of Merged Process

Consider the merged process from k individual processes

The random variable V_{k} is the forward recurrence time of the merged process. We will show that as $k \rightarrow \infty$, the asymptotic distribution of V_{k} is exponential and hence the merged process is asymptotically a Poisson Process.

Assume that for each of the processes

- Stationary
- Multiple occurences have 0 probability
- pdf between events of each process is $q(t)$.

If $q(t)$ is pdf of time between events for a single process, then each has the same forward recurrence time distribution with pdf

$$
q_{f}(x)=Q(x) / m
$$

With k independent processes there will be
$T_{f}(1), T_{f}(2), \ldots, T_{f}(k)$ forward recurrence time random variables
Process 1:

Process 2:

Process k :

Merged Process:

$$
\begin{gathered}
V_{k}=\min \left(T_{f}(1), T_{f}(2), \ldots, T_{f}(k)\right) \\
P\left\{V_{k}>v\right\}=G_{k}(v)=P\left\{T_{f}(1)>v, T_{f}(2)>v, \ldots, T_{f}(k)>v\right\} \\
=Q_{f}(v)^{k}
\end{gathered}
$$

$$
\begin{aligned}
G_{k}(v)=P\left\{V_{k}>v\right\} & =Q_{f}(v)^{k} \text { where } \\
Q_{f}(v) & =\int_{v}^{\infty} q_{f}(x) d x, \quad q_{f}(x)=Q(x) / m
\end{aligned}
$$

Let $g_{k}(x)=$ pdf of merged process

$$
\begin{aligned}
& G_{k}(v)= \int_{v}^{\infty} g_{k}(x) d x=Q_{f}(v)^{k} \\
&-\frac{d}{d v} G_{k}(v)=g_{k}(v)=k Q_{f}(v)^{k-1} q_{f}(v) \\
& g_{k}(v)=k Q_{f}(v)^{k-1} \frac{Q(v)}{m}
\end{aligned}
$$

Consider transformation $z=\frac{V_{k}}{m / k}=\frac{k V_{k}}{m}, \quad \frac{d z}{d v}=\frac{k}{m}$

$$
g_{k}(z)=g_{k}(v)\left|\frac{\partial V}{\partial z}\right|=\frac{k}{m} Q_{f}\left(\frac{m z}{k}\right)^{k-1} Q\left(\frac{m z}{k}\right) \frac{m}{k}
$$

$$
g_{k}(z)=Q\left(\frac{m z}{k}\right)\left[1-\int_{o}^{\frac{m z}{k}} \frac{Q(x)}{m} d x\right]^{k-1}
$$

as $Q_{f}\left(\frac{m z}{k}\right)=\int_{\frac{m z}{k}}^{\infty} \frac{Q(x)}{m} d x=1-\int_{0}^{\frac{m z}{k}} \frac{Q(x)}{m} d x$
For fixed z,
as $k \rightarrow \infty, \frac{z m}{k} \rightarrow 0$ and $Q\left(\frac{m z}{k}\right) \rightarrow 1$

Also

$$
\int_{0}^{\frac{m z}{k}} \frac{Q(x)}{m} d x \rightarrow \frac{Q\left(\frac{m z}{k}\right)}{m} \cdot \frac{m z}{k}=Q\left(\frac{m z}{k}\right) \frac{z}{k} \rightarrow \frac{z}{k}
$$

\therefore as $k \rightarrow \infty$

$$
g_{k}(z) \rightarrow\left(1-\frac{z}{k}\right)^{k-1} \rightarrow e^{-z}
$$

Thus as $k \rightarrow \infty$, the forward recurrence time (multiplied by $\left.\frac{m}{k}\right) z=\frac{m}{k} V_{k}$ is distributed as a unit exponential distribution. Hence for large $k, V_{k}=\frac{k}{m} z$ has an asymptotic exponential distribution with parameter $\lambda=k / m$. Since the asymptotic forward recurrence time is exponential, the time between events (of the merged process), is asymptotically exponential.

Note: A forward recurrence time is exponential if and only if the time between events is exponential; ie.

$$
q_{f}(x)=\frac{Q(x)}{m}=\lambda e^{-\lambda x} \text { if } Q(x)=e^{-\lambda x}
$$

and if $q_{f}(x)=\lambda e^{-\lambda x} \Rightarrow Q(x)=e^{-\lambda x}$
Additional Note: The merged process is $N(t)=\sum_{i=1}^{k} N_{i}(t)$. Suppose $E\left(N_{i}(t)\right)=\nu t$. Units of ν are "no. of events per unit time"

The units of m are "time per event"
Thus $E(N(t))=(k \nu) t$ and $(k \nu)$ is mean events per unit time. The units of $\left(\frac{1}{k \nu}\right)$ or $\left(\frac{1}{\nu}\right)$ is "mean time per event". Hence $m=1 / \nu$ for an individual process and the mean of the merged process is $1 / k \nu$.
Ex. $\nu=6$ events per year $\Rightarrow m=\frac{12}{6}=2$ months (mean time between events).

5. Splitting of Poisson Processes

Example: Times between births (in a family) follow an exponential distribution. The births are categorized by gender.

Example: Times between back pain follow an exponential distribution. However the degree of pain may be categorized as the required medication depends on the degree of pain.

Consider a Poisson Process $\{N(t), t \geq 0\}$ where in addition to observing an event, the event can be classified as belonging to one of r possible categories.

Define $N_{i}(t)=$ no. of events of type i during $(0, t]$ for $i=1,2, \ldots, r$

$$
\Rightarrow \quad N(t)=N_{1}(t)+N_{2}(t)+\ldots+N_{r}(t)
$$

This process is referred to as "splitting" the process.
Bernoulli Splitting Mechanism
Suppose an event takes place in the interval $(t, t+d t]$. Define the indicator random variable $Z(t)=i(i=1,2, \ldots, r)$ such that

$$
P\{Z(T)=i \mid \text { event at }(t, t+d t]\}=p_{i} .
$$

Note p_{i} is independent of time.
Then if $N(t)=\sum_{i=1}^{r} N_{i}(t)$ the counting processes $\left\{N_{i}(t), t \geq 0\right\}$ are
Poisson process with parameter $\left(\lambda p_{i}\right)$ for $i=1,2, \ldots, r$.

Proof: Suppose over time $(0, t], n$ events are observed of which s_{i} are classified as of time i with $\sum_{i=1}^{r} s_{i}=n$.

$$
\begin{aligned}
P\left\{N_{1}(t)=s_{1}, N_{2}(t)=s_{2}, \ldots, N_{r}(t)\right. & \left.=s_{r} \mid N(t)=n\right\} \\
& =\frac{n!}{s_{1}!s_{2}!\ldots s_{r}!} p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{r}^{s_{r}}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P\left\{N_{i}(t)=s_{i}, i=1, \ldots, r \text { and } N(t)=n\right\} \\
& =\frac{n!}{\prod_{i=1}^{r} s_{i}!} p_{1}^{s_{1}} p_{2}^{s_{2}} \ldots p_{r}^{s_{r}} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} \\
& =\prod_{i=1}^{r} \frac{\left(p_{i} \lambda t\right)^{s_{i}} e^{-p_{i} \lambda t}}{s_{i}!}=\prod_{i=1}^{r} P\left\{N_{i}(t)=s_{i}\right\}
\end{aligned}
$$

which shows that the $\left\{N_{i}(t)\right\}$ are independent and follow Poisson distributions with parameters $\left\{\lambda p_{i}\right\}$.
$\Rightarrow \quad\left\{N_{i}(t), t \geq 0\right\}$ are Poisson Processes.

Example of Nonhomogenous Splitting

Suppose a person is subject to serious migraine headaches. Some of these are so serious that medical attention is required. Define

$$
N(t)=\text { no. of migraine headaches in }(0, t]
$$

$N_{m}(t)=$ no. of migraine headaches requiring medical attention
$p(\tau)=$ prob. requiring medical attention if
headache occurs at $(\tau, \tau+d \tau)$.
Suppose an event occurs at $(\tau, \tau+d \tau)$; then Prob.of requiring attention $=p(\tau) d \tau$.

Note that conditional on a single event taking place in $(0, t], \tau$ is uniform over ($0, t]$; i.e.

$$
f(\tau \mid N(t)=1)=1 / t \quad 0<\tau \leq t \quad \text { and } \quad \alpha=\frac{1}{t} \int_{0}^{t} p(\tau) d \tau
$$

$$
\begin{gathered}
\alpha=\frac{1}{t} \int_{0}^{t} p(\tau) d \tau \\
\text { Time to event } \\
\therefore P\left\{N_{m}(t)=k \mid N(t)=n\right\}=\binom{n}{k} \alpha^{k}(1-\alpha)^{(n-k)} \\
\\
P\left\{N_{m}(t)=k, N(t)=n\right\}=\binom{n}{k} \alpha^{k}(1-\alpha)^{n-k} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!}
\end{gathered}
$$

$$
\begin{aligned}
P\left\{N_{m}(t)=k\right\} & =\sum_{n=k}^{\infty}\binom{n}{k} \alpha^{k}(1-\alpha)^{n-k} \frac{e^{-\lambda t}(\lambda t)^{n}}{n!} \\
& =\frac{\alpha^{k}}{k!} e^{-\lambda t} \sum_{n=k}^{\infty} \frac{(\lambda t)^{n}}{(n-k)!}(1-\alpha)^{n-k} \\
& =\frac{\alpha^{k}}{k!} e^{-\lambda t}(\lambda t)^{k} \sum_{n=k}^{\infty} \frac{(\lambda t)^{n-k}(1-\alpha)^{n-k}}{(n-k)!} \\
& =\frac{\alpha^{k}}{k!}(\lambda t)^{k} e^{-\lambda t} \cdot e^{\lambda t(1-\alpha)} \\
& P\left\{N_{m}(t)=k\right\}=e^{-\alpha \lambda t} \frac{(\alpha \lambda t)^{k}}{k!}
\end{aligned}
$$

4.7 Non-homogeneous Poisson Processes

Preliminaries

Let $N(t)$ follow a Poisson distribution; i.e.

$$
P\{N(t)=k\}=e^{-\lambda t}(\lambda t)^{k} / k!
$$

Holding t fixed, the generating function of the distribution is

$$
\begin{gathered}
\phi_{N(t)}(s)=E\left[e^{-s N(t)}\right]=\sum_{k=0}^{\infty} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!} e^{-s k} \\
=e^{-\lambda t} \sum_{k=0}^{\infty} \frac{\left(e^{s} \lambda t\right)^{k}}{k!}=e^{-\lambda t} e^{e^{-s} \lambda t} \\
\phi_{N(t)}(s)=e^{\lambda t\left[e^{-s}-1\right]}=e^{\lambda t(z-1)} \text { if } z=e^{-s}
\end{gathered}
$$

The mean is $E[N(t)]=\lambda t$

Consider the Counting Process $\{N(t), t \geq 0\}$ having the Laplace Transform

$$
\begin{array}{ll}
\left({ }^{*}\right) & \phi_{N(t)}(s)=e^{\Lambda(t)\left[e^{-s}-1\right]}=e^{\Lambda(t)[z-1]} \tag{*}\\
\Rightarrow & E[N(t)]=\Lambda(t), \quad P\{N(t)=k\}=e^{-\Lambda(t)}[\Lambda(t)]^{k} / k!
\end{array}
$$

For the Poisson Process $\Lambda(t)=\lambda t$ and the mean is proportional to t. However when $E[N(t)] \neq \lambda t$ we call the process $\{N(t), t \geq 0\}$ a non-homogenized Poisson Process and $E(N(t)]=\Lambda(t)$
$\Lambda(t)$ can be assumed to be continuous and differentiable

$$
\frac{d}{d t} \Lambda(t)=\Lambda^{\prime}(t)=\lambda(t)
$$

The quantity $\lambda(t)$ is called intensity function. $\Lambda(t)$ can be represented by

$$
\Lambda(t)=\int_{0}^{t} \lambda(x) d x
$$

If $N(t)$ has the Transform given by $(*)$ then

$$
P\{N(t)=k\}=e^{-\Lambda(t)} \Lambda(t)^{k} / k!
$$

Since $P\left\{S_{n}>t\right\}=P\{N(t)<n\}$
We have $P\left\{S_{1}>t\right\}=P\{N(t)<1\}=P\{N(t)=0\}$

$$
P\left(S_{1}>t\right)=e^{-\Lambda(t)}
$$

Thus pdf of time between events is

$$
f(t)=\lambda(t) e^{-\int_{0}^{t} \lambda(x) d x}, \quad \Lambda(t)=\int_{0}^{t} \lambda(x) d x
$$

Note that if $H=\Lambda(t)$, then H is a random variable following a unit exponential distribution.

Assume independent increments; i.e. $N(t+\mu)-N(\mu)$ and $N(\mu)$ are independent
L.T. Transform $\psi(z, t)=e^{\Lambda(t)[z-1]} z=e^{-s}$

Generating function $\quad=E\left[e^{-s N(t)}\right]=E\left[z^{N(t)}\right]$

$$
\begin{aligned}
e^{\Lambda(t+u)(z-1)}=E\left[z^{N(t+u)}\right] & =E\left[z^{N(t+u)-N(u)+N(u)}\right] \\
& =E\left[z^{N(t+u)-N(u)}\right] \cdot E\left[z^{N(u)}\right] \\
& =\psi e^{\Lambda(u)[z-1]} \\
\therefore \quad \psi=E\left[z^{N(t+u)-N(u)]}\right] & =\frac{e^{\Lambda(t+u)(z-1)}}{e^{\Lambda(u)(z-1)}}=e^{[\Lambda(t+u)-\Lambda(u)][z-1]}
\end{aligned}
$$

where $\Lambda(t+u)-\Lambda(u)=\int_{u}^{t+u} \lambda(x) d x$
$\therefore \quad P\{N(t+u)-N(u)=k\}=\frac{e^{-[\Lambda(t+u)-\Lambda(u)]}[\Lambda(t+u)-\Lambda(u)]^{k}}{k!}$

Axiomatic Derivation of

Non-Homogenized Poisson Distribution

Assume counting process $\{N(t), t \geq 0\}$
(i) $N(0)=0$
(ii) $\{N(t), t \geq 0\}$ has independent increments; i.e. $N(t+s)-N(s)$ and $N(s)$ are independent
(iii) $P\{N(t+h)=k \mid N(t)=k\}=1-\lambda(t) h+0(h)$ $P\{N(t+h)=k+1 \mid N(t)=k\}=\lambda(t)+0(h)$ $P\{N(t+h)=k+j \mid N(t)=k\}=o(h) j \geq 2$
$\Rightarrow \quad p\{N(t+s)-N(s)=k\}=e^{-[\Lambda(t+s)-\Lambda(s)]^{2}} \frac{[\Lambda(t+s)-\Lambda(s)]^{k}}{k!}$

4.8 Compound Poisson Process

Example. Consider a single hypodermic needle which is shared. The times between use follow a Poisson Process. However at each use, several people use it. What is the distribution of total use?

Let $\{N(t), t \geq 0\}$ be a Poisson process and $\left\{Z_{n}, n \geq 1\right\}$ be iid random variables which are independent of $N(t)$. Define

$$
Z(t)=\sum_{n=1}^{N(t)} Z_{n}
$$

The process $Z(t)$ is called a Compound Poisson Process. It will be assumed that $\left\{Z_{n}\right\}$ takes on integer values.

Define $A^{*}(s)=E\left[e^{-s z_{n}}\right]$. Then

$$
\begin{aligned}
& \phi(s \mid N(t)=r)=E\left[e^{-s Z(t)}\right]=A^{*}(s)^{r} \\
& \phi(s \mid N(t)=r)=A^{*}(s)^{r} \\
& \phi(s)=\sum_{r=0}^{\infty} \phi(s \mid N(t)=r) P(N(t)=r) \\
&=\sum_{r=0}^{\infty} A^{*}(s)^{r} \frac{e^{-\lambda t}(\lambda t)^{r}}{r!}=e^{-\lambda t} \sum_{r=0}^{\infty} \frac{\left(A^{*}(s) \lambda t\right)^{r}}{r!} \\
& \phi(s)=e^{-\lambda t} e^{A^{*}(s) \lambda t}=e^{-\lambda t\left(1-A^{*}(s)\right)} \\
& A^{*}(s)=E\left(e^{-s z_{N}}\right)=1-s m_{1}+\frac{s^{2}}{2} m_{2}+\ldots \\
&-\lambda t\left(1-A^{*}(s)\right)=-\lambda t\left[s m_{1}-\frac{s^{2}}{2} m_{2}+\ldots\right], m_{i}=E\left(z_{n}^{i}\right)
\end{aligned}
$$

Cumulant function $=K(s)=\log \phi(s)$

$$
K(s)=-s m+\frac{s^{2}}{2} \sigma^{2}+\ldots
$$

where $\left(m, \sigma^{2}\right)$ refer to $Z(t)$.

$$
\begin{aligned}
& K(s)=-\lambda t\left[s m_{1}-\frac{s^{2}}{2} m_{2}+\ldots\right] \\
& E[Z(t)]=\lambda t m_{1} \\
& V[Z(t)]=\lambda t m_{2}
\end{aligned} \quad \begin{aligned}
& m_{i}=E\left(z_{n}^{i}\right)
\end{aligned}
$$

