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4 Poisson Processes

4.1 Definition

Consider a series of events occurring over time, i.e.

· · · > Time
0

X X X X

Define Ti as the time between the (i− 1)st and ith event. Then

Sn = T1 + T2 + . . .+ Tn = Time to nth event.

Define N(t) = no. of events in (0, t].

Then

P{Sn > t} = P{N(t) < n}

If the time for the nth event exceeds t, then the number of events in (0, t]

must be less than n.
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P{Sn > t} = P{N(t) < n}

pt(n) = P{N(t) = n} = P{N(t) < n+ 1} − P{N(t) < n}

= P{Sn+1 > t} − P{Sn > t}

where Sn = T1 + T2 + . . .+ Tn.

Define Qn+1(t) = P{Sn+1 > t}, Qn(t) = P{Sn > t}

Then we can write

pt(n) = Qn+1(t) −Qn(t)

and taking LaPlace transforms

p∗s(n) = Q∗
n+1(s) −Q∗

n(s)

157



If qn+1(t) and qn(t) are respective pdf’s.

Q∗
n+1(s) =

1 − q∗n+1(s)

s
, Q∗

n(s) =
1 − q∗n(s)

s

and

p∗s(n) =
1 − q∗n+1(s)

s
−

1 − q∗n(s)

s
=
q∗n(s) − q∗n+1(s)

s

Recall T1 is time between 0 and first event, T2 is time between first and

second event, etc.
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Assume {Ti} i = 1, 2, . . . are independent and with the exception of

i = 1, are identically distributed with pdf q(t). Also assume T1 has pdf

q1(t). Then

q∗n+1(s) = q∗1(s)[q∗(s)]n, q∗n(s) = q∗1(s)[q∗(s)]n−1

and

p∗s(n) =
q∗n(s) − q∗n+1(s)

s
= q∗1(s)q∗(s)n−1

[

1 − q∗(s)

s

]

Note that q1(t) is a forward recurrence time. Hence

q1(t) =
Q(t)

m
and q∗1(s) =

1 − q∗(s)

sm

p∗s(n) =
q∗(s)n−1

m

[

1 − q∗(s)

s

]2
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Assume q(t) = λe−λt for t > 0 (m = 1/λ)

= 0 otherwise.

Then q∗(s) = λ/λ+ s,
1 − q∗(s)

s
= 1/(λ+ s)

and p∗s(n) =

(

λ

λ+ s

)n−1 (

1

λ+ s

)2

λ =
1

λ
(λ /λ+ s)

n+1

.

p∗s(n) =
1

λ
(λ/λ+ s)n+1

However (λ/λ+ s)n+1 is the LaPlace transform of a gamma distribution

with parameters (λ, n+ 1) i.e.

f(t) =
e−λt(λt)n+1−1λ

Γ(n+ 1)
for t > 0
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.̇. pt(n) = L−1{p∗s(n)} =
e−λt(λt)n

n!

which is the Poisson Distribution. Hence N(t) follows a Poisson

distribution and

P{N(t) < n} =

n−1
∑

r=0

pt(r) = P{Sn > t}

P{Sn > t} =

n−1
∑

r=0

e−λt(λt)r

r!
.

We have shown that if the times between events are iid following an

exponential distribution the N(t) is Poisson with E[N(t)] = λt.
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Alternatively if N(t) follows a Poisson distribution, then Sn has a

gamma distribution with pdf f(t) =
e−λt(λt)n−1λ

Γ(n)
for t > 0.

This implies time between events are exponential.

Since P{Sn > t} = P{N(t) < n} we have proved the identity

P{Sn > t} =

∫ ∞

t

e−λt(λt)n−1λ

Γ(n)
λdx =

n−1
∑

r=0

e−λt(λt)r

r!
.

This identity is usually proved by using integration by parts.

When N(t) follows a Poisson distribution with E[N(t)] = λt, the

set {N(t), t > 0} is called a Poisson Process.
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4.2 Derivation of Exponential Distribution

Define Pn(h) = Prob. of n events in a time interval h

Assume

P0(h) = 1−λh+ o(h); P1(h) = λh+ o(h); Pn(h) = o(h) for n > 1

where o(h) means a term ψ(h) so that lim
h→0

ψ(h)

h
= 0. Consider a finite

time interval (0, t). Divide the interval into n sub-intervals of length h.
Then t = nh.

· · ·
0 t

h h h h

t = nh

The probability of no events in (0, t) is equivalent to no events in each
sub-interval; i.e.

Pn{T > t} = P{no events in (0, t)}

T = Time for 1st event
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Suppose the probability of events in any sub interval are independent of

each other. (Assumption of independent increments.) Then

Pn{T > t} = [1 − λh+ o(h)]n = [1 −
λt

n
+ o(h)]n

= (1 −
λt

n
)n + n o(h)(1 −

λt

n
)n−1 + . . .

Since

lim
n→∞

(1 −
λt

n
)n = e−λt

and

lim
n→∞

n o(h) = lim
h→0

t

h
o(h) = 0

We have P{T > t} = lim
h→0

Pn{T > t} = e−λt.

.̇. The pdf of T is −
d

dt
P{T > t} = λe−λt. (Exponential Distribution)
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4.3 Properties of Exponential Distribution

q(t) = λe−λt t > 0

E(T ) = 1/λ = m, V (t) = 1/λ2 = m2

q∗(s) = λ/λ+ s

Consider r < t.

Then

P{T > r + t|T > r} = Conditional distribution

=
Q(r + t)

Q(r)
=
e−λ(r+t)

e−λr
= e−λt

i.e. P{T > r + t|T > r} = P{T > t} for all r and t.

Also P{T > r + t} = e−λ(r+t) = Q(r)Q(t) = Q(r + t)

Exponential distribution is only function satisfying Q(r+ t) = Q(r)Q(t)
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Proof:

Q

(

2

n

)

= Q

(

1

n

)2

and in general Q
(m

n

)

= Q

(

1

n

)m

Q(1) = Q

(

1

n
+

1

n
+ . . .+

1

n

)

=

[

Q

(

1

n

)]n

, m = n

.̇. Q
(m

n

)

=

[

Q

(

1

n

)n]m/n

= Q(1)m/n.

If Q(·) is continuous or left or right continuous we can write

Q(t) = Q(1)t.

Since Q(1)t = et log Q(1) we have logQ(1) is the negative of the rate

parameter. Hence

Q(t) = e−λt where λ = − log Q(1).
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a. Normalized Spacings

Let {Ti} i = 1, 2, . . . , n be iid following an exponential distribution with

E(Ti) = 1/λ.

Define T(1) ≤ T(2) ≤ . . . ≤ T(n) Order statistics

Then the joint distribution of the order statistics is

f(t(1), t(2), . . . , t(n))dt(1), t(2), . . . t(n) = P{t(1) < T(1),≤ t(1)+dt(1), . . . }

=
n!

1! 1! . . . 1!

= n!λe−λt(1) · λe−λt(2) . . . λe−λt(n)dt(1) . . . dt(n)

f(t(1), . . . , t(n)) = n!λne−λ
∑

n

1 t(i) = n!λne−λS

where S =

n
∑

1

t(i) =

n
∑

1

ti, 0 ≤ t(1) ≤ . . . ≤ t(n)
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f(t(1), . . . , t(n)) = n!λne−λS , 0 ≤ t(1) ≤ . . . ≤ t(n)

S =

n
∑

1

t(i)

Consider

Z1 = nT(1), Z2 = (n− 1)(T(2) − T(1)), · · · ,

Z(i) = (n− i+ 1)(T(i) − T(i−1)), · · · , Z(n) = T(n) − T(n−1).

We shall show that {Zi} are iid exponential.

f(Z1, Z2, . . . , Zn) = f(t(1), . . . , t(n))

∣

∣

∣

∣

∂(t(1), . . . , ∂t(n))

∂(Z1, . . . , Zn)

∣

∣

∣

∣

where

∣

∣

∣

∣

∂(t(1), . . . , t(n))

∂(Z1, . . . , Zn)

∣

∣

∣

∣

is the determinant of the Jacobian.
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We shall find the Jacobian by making use of the relation
∣

∣

∣

∣

∂(t(1), . . . , ∂t(n))

∂(Z1, . . . , Zn)

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(Z1, Z2, . . . Zn)

∂t(1), . . . , t(n))

∣

∣

∣

∣

−1

Zi = (n− i+ 1)(T(i) − T(i−1)), T(0) = 0

∂Zi

∂T(j)
=























n− i+ 1 j = i

−(n− i+ 1) j = i− 1

0 Otherwise
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∂(Z1, . . . , Zn)

∂(t(1), . . . , t(n)
=

































n 0 0 0 . . . 0

−(n− 1) (n− 1) 0 0 . . . 0

0 −(n− 2) (n− 2) 0 . . . 0

...

0 0 . . . . . . −1 1

































170



Note: The determinant of a trangular matrix is the product of the main

diagonal terms

.̇.

∣

∣

∣

∣

∂(Z1, . . . , Zn)

∂(t(1), . . . , t(n))

∣

∣

∣

∣

= n(n− 1)(n− 2) . . . 2 · 1 = n!

and

f(z1, z2, . . . , zn) = n!λn e−λS 1

n!
= λne

−λ

n
∑

1

zi

= λne−λS

as S =

n
∑

i=1

t(i) = z1 + . . .+ zn.

The spacings Zi = (n− i+ 1)(T(i) − T(i−1)) are sometimes called

normalized spacings.
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Homework:

1. Suppose there are n observations which are iid
exponential (Ti = 1/λ). However there are r non-censored observations
and (n− r) censored observations all censored at t(r).
Show Zi = (n− i+ 1)(T(i) − T(i−1)) for i = 1, 2, . . . , r are iid
exponential.

2. Show that

T(i) =
Z1

n
+

Z2

n− 1
+ . . .+

Zi

n− i+ 1

and prove

E(T(i)) =
1

λ

i
∑

j=1

1

n− j + 1

Find variances and covariances of {T(i)}.
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b. Campbell’s Theorem

Let {N(t), t > 0} be a Poisson Process. Assume n events occur in the

interval (0, t]. Note that N(t) = n is the realization of a random variable

and has probability P{N(t) = n} = e−λt (λt)
n

n!

Define Wn = Waiting time for nth event.

If {Ti} i = 1, 2, . . . , n are the random variables representing the time

between events

f(t1, . . . , tn) = Πn
1λe

−λti = λne−λ
∑

n

1 ti

But
n

∑

1

ti = Wn, hence

f(t1, . . . , tn) = λne−λWn
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f(t1, . . . , tn) = λne−λWn

Now consider the transformation

W1 = t1, W2 = t1 + t2, . . . , Wn = t1 + t2 + . . .+ tn

The distribution of W = (W1,W2, . . . ,Wn) is

f(W) = f(t)

∣

∣

∣

∣

∂(t)

∂W

∣

∣

∣

∣

where

∣

∣

∣

∣

∂(t)

∂W

∣

∣

∣

∣

is the determinant of the Jacobian.
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Note:
∂(W)

∂t
=



























1 0 0 0 . . . 0

1 1 0 0 . . . 0

1 1 1 0 . . . 0

1 1 1 1 . . . 0
...

1 1 1 1 . . . 1



























and

∣

∣

∣

∣

∂(t)

∂W

∣

∣

∣

∣

=

∣

∣

∣

∣

∂(W)

∂t

∣

∣

∣

∣

−1

= 1

.̇. f(w1, . . . , wn) = λne−λwn 0 < w1 ≤ . . . ≤ wn < t.

But there are no events in the interval (wn, t]. This carries probability
e−λ(t−wn). Hence the joint distribution of the W is

f(W) = λne−λwn · e−λ(t−wn) = λne−λt
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f (W) = λne−λt 0 ≤ w1 ≤ w2 ≤ . . . ≤ wn < t

Consider

f(W|N(t) = n) =
λne−λt

eλt(λt)n/n!
= n!/tn.

This is the joint distribution of the order statistics from a uniform

(0, t) distribution; i.e., f(x) =
1

t
0 < x ≤ t.

Hence E(Wi|N(t) = n) =
it

n+ 1
i = 1, 2, . . . , n

We can consider the unordered waiting times, conditional on N(t) = n,

as following a uniform (0, t) distribution.
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Since w1 = t1, w2 = t1 + t2, . . . , wn = t1 + t2 + . . .+ tn

ti = wi − wi−1 (w0 = 0)

The difference between the waiting times are the original times ti. These

times follow the distribution conditional on N(t) = n; i.e.

f(t1, . . . , tn|N(t) = n) = n!/tn

Note that if f(ti) = 1/t 0 < ti < t, the joint distribution

for i = 1, 2, . . . , n of n independent uniform (0, t) random variables

is f(t) = 1/tn. If 0 < t(1) ≤ t(2) ≤ . . . ≤ t(n) < t the distribution of the

order statistics is

f(t(1), . . . , t(n)) = n!/tn

which is the same as f(t1, . . . , tn|N(t)).
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c. Minimum of Several Exponential Random Variables

Let Ti (i = 1, . . . , n) be ind. exponential r.v. with parameter λi and let

T = min(T1, . . . , Tn)

→ P{T > t} = P{T1 > t, T2 > t, . . . , Tn > t} = πn
i=1P{Ti > t}

= πn
i=1e

−λit = e−λt, λ =

n
∑

1

λi

→ T is exponential with parameter λ

P{T > t} = e−λt λ =

n
∑

i=1

λi

T = min(T1, . . . , Tn)

If all λi = λ0, λ = nλ0, P{T > t} = e−nλ0t
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Define N as the index of the random variable which is the smallest failure

time.

For example if Tr ≤ Ti for all i, then N = r.

Consider P{T > t, Tr ≤ Ti all i} = P{N = r, T > t}

P{N = r, T > t} = P{T > t, Ti ≥ Tr, i 6= r}

=

∫ ∞

t

P{T > tr, i 6= r | tr}f(tr)dtr

=

∫ ∞

t

e−(λ−λr)trλre
−λrtrdtr

= λr

∫ ∞

t

e−λtrdtr

=
λr

λ
e−λt
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P{N = r, T > t} =
λr

λ
e−λt

P{N = r, T > 0} = P{N = r} =
λr

λ
, λ =

n
∑

1

λi

→ P{N = r, T > t} = P{N = r}P{T > t}

→ N (index of smallest) and T are independent

If λi = λ0

P{N = r} =
λ0

nλ0
=

1

n

(All populations have the same prob. of being the smallest.)
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D. Relation to Erlang and Gamma Distribution

Consider T = T1 + . . .+ Tn

Since q∗i (s) =
λi

λi + s
, q∗T (s) =

n
∏

i=1

λi

λi + s

which is L.T. of Erlang distribution. If λi are all distinct

q(t) =
n

∑

i=1

Aie
−λit , Ai =

∏

j 6=i

λi

λj − λi

If λi = λ, q∗T (s) =

(

λ

λ+ s

)n

q(t) =
λ(λt)n−1e−λt

Γ(n)
Gamma Distribution
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E. Guarantee Time

Consider the r.v. following the distribution having pdf

q(t) = λe−λ(t−G) for t > G

= 0 for t ≤ G

The parameter G is called a guarantee time

If the transformation Y = T −G is made then f(y) = λe−λy for y > 0.

.̇. E(Y ) = 1/λ, V (Y ) = 1/λ2, . . .

Since T = Y +G, E(T ) =
1

λ
+G

and central moments if T and Y are the same.

182



F. Random Sums of Exponential Random Variables

Let {Ti} i = 1, 2, . . . , N be iid with f(t) = λe−λt and consider

SN = T1 + T2 + . . .+ TN

with P{N = n} = pn.

The Laplace Transform of SN is (λ/λ+ s)n for fixed N = n. Hence

f∗(s) = E

(

λ

λ+ s

)N

resulting in a pdf which is a mixture of gamma

distributions.

f(t) =

∞
∑

n=1

λ(λt)n−1e−λt

Γ(n)
pn
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Suppose pn = pn−1q n = 1, 2, . . . (negative exponential distribution)

f∗(s) =

∞
∑

n=1

(

λ

λ+ s

)n

pn−1q =

∞
∑

n=1

q

p

(

pλ

λ+ s

)n

=
q

p

[

pλ/λ+ s

1 − pλ
λ+s

]

=
q

p
·

pλ

s+ λ(1 − p)
=

qλ

s+ qλ

f∗(s) =
qλ

s+ qλ

⇒ SN = T1 + T2 + . . .+ TN , P{N = n} = pn−1q

has exponential distribution with parameter (λq).
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4.4 Counting Processes and the Poisson Distribution

Definition: A stochastic process {N(t), T > 0} is said to be a counting

process where N(t) denotes the number of events that have occurred in

the interval (0, t]. It has the properties.

(i.) N(t) is integer value

(ii.) N(t) ≥ 0

(iii.) If s < t, N(s) ≤ N(t) and N(t) −N(s) = number of events

occurring is (s, t].
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A counting process has independent increments if the events in disjoint

intervals are independent; i.e. N(s) are N(t) −N(s) are independent

events.

A counting process has stationary increments if the probability of the

number of events in any interval depends only on the length of the

interval; i.e.

N(t) and N(s+ t) −N(s)

have the same probability distribution for all s. A Poisson process

is a counting process having independent and stationary

increments.
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TH. Assume {N(t), t ≥ 0} is a Poisson Process. Then the dsitribution of

Ns(t) = N(s+ t) −N(s) is independent of s and only depends on the

length of the interval, i.e.

P{N(t+ s) −N(s)|N(s)} = P{N(t+ s) −N(s)}

for all s. This implies that knowledge of N(u) for 0 < u ≤ s is also

irrelevant.

P{N(t+ s) −N(s)|N(u), 0 < u ≤ s}

= P{N(t+ s) −N(s)}.

This feature defines a stationary process.
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TH. A Poisson Process has independent increments.

Consider 0 ≤ t1 < t2 < t3 < t4

> Time
0

X X X X
t1 t2 t3 t4

Consider events in (t3, t4]; i.e.

N(t4) −N(t3)

P{N(t4) −N(t3) | N(u), o < u ≤ t3}

= P{N(t4) −N(t3)}.

Distribution is independent of what happened prior to t3. Hence if the

intervals (t1, t2] and (t2, t4) are non-overlapping

N(t2) −N(t1) and N(t4) −N(t3) are independent.
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TH. Cov(N(t), N(s+ t)) = λt (Poisson Process)

Proof N(s+ t) −N(t) is independent of N(t)

Cov(N(s+ t) −N(t), N(t)) = 0

= Cov(N(s+ t), N(t)) − V (N(t)) = 0

.̇. Cov(N(s+ t), N(t)) = V (N(t)) = λt

as variance of N(t) is λt.

An alternative statement of theorem is

Cov(N(s), N(t)) = λ min(s, t)

189



TH. A counting process {N(t), t ≥ 0} is a Poisson Process if and only if

(i) It has stationary and independent increments

(ii) N(0) = 0 and

P{N(h) = 0} = 1 − λh+ 0(h)

P{N(h) = 1} = λh+ 0(h)

P{N(h) = j} = 0(h), j > 1

Notes: The notation 0(h) “little o of h’ refers to some function ϕ(h) for

which

lim
h→0

ϕ(h)

h
= 0

Divide interval (0, t] into n sub-intervals of length h; i.e. nh = t

P{N(kh) −N(k − 1)h)} = P{N(h)}
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T = Time to event beginning at t = 0.

P{T > t} = P{N(t) = 0} = P{No events in each sub-interval}

P{N(t) = 0} = P{T > t} = [1 − λh+ o(h)]n

= (1 − λh)n + n(1 − λh)n−1o(h) + o(h2)

= (1 − λh)n{1 +
n o(h)

1 − λh
+ . . . }

=

(

1 −
λt

n

)n
{

1 +
t

1 − λt
n

o(h)

h
+ . . .

}

→ e−λt as n→ ∞, h→ 0

⇒ P{T > t} = e−λt

Hence T is exponential; i.e. Time between events is exponential.

⇒ {N(t), t ≥ 0} is Poisson Process
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4.5 Superposition of Counting Processes

Suppose there are k counting processes which merge into a single

counting process; e.g. k = 3.

X X

X

X

X XX X X

X

Process 1:

Process 2:

Process 3:

Merged Process:

The merged process is called the superposition of the individual counting

processes

N(t) = N1(t) +N2(t) + . . .+Nk(t)
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A. Superposition of Poisson Processes

N(t) = N1(t) + . . .+Nk(t)

Suppose {Ni(t), t ≥ 0} i = 1, 2, . . . , k are Poisson Processes with

E[Ni(t)] = λit.

Note that each of the counting processes has stationary and independent

increments.

Also N(t) is Poisson with parameter

E(N(t)) =

k
∑

i=1

(λit) = tλ, λ =

k
∑

i=1

λi

⇒ N(t) is a Poisson Process

Hence {N(t), t ≥ 0} has stationary and independent increments.
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B. General Case of Merged Process

Consider the merged process from k individual processes

r

r

r

r

r

r

XX

XX XX X X

X Vk ><

Merged Process:

The random variable Vk is the forward recurrence time of the merged
process. We will show that as k → ∞, the asymptotic distribution of Vk is
exponential and hence the merged process is asymptotically a Poisson
Process.

Assume that for each of the processes

• Stationary
• Multiple occurences have 0 probability
• pdf between events of each process is q(t).
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If q(t) is pdf of time between events for a single process, then each has
the same forward recurrence time distribution with pdf

qf (x) = Q(x)/m

With k independent processes there will be
Tf (1), Tf (2), . . . , Tf (k) forward recurrence time random variables

X X

X

X

X XX X X

X

Process 1:

Process 2:
. . . r r r

Process k:

Merged Process:

Vk = min(Tf (1), Tf (2), . . . , Tf (k))

P{Vk > v} = Gk(v) = P{Tf (1) > v, Tf (2) > v, . . . , Tf (k) > v}

= Qf (v)k
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Gk(v) = P{Vk > v} = Qf (v)k where

Qf (v) =

∫ ∞

v

qf (x)dx, qf (x) = Q(x)/m

Let gk(x) = pdf of merged process

Gk(v) =

∫ ∞

v

gk(x)dx = Qf (v)k

−
d

dv
Gk(v) = gk(v) = kQf (v)k−1qf (v)

gk(v) = kQf (v)k−1Q(v)

m
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Consider transformation z =
Vk

m/k
=
kVk

m
,

dz

dv
=

k

m

gk(z) = gk(v)

∣

∣

∣

∣

∂V

∂z

∣

∣

∣

∣

=
k

m
Qf

(mz

k

)k−1

Q
(mz

k

) m

k

gk(z) = Q
(mz

k

)

[

1 −

∫ mz

k

o

Q(x)

m
dx

]k−1

as Qf

(mz

k

)

=

∫ ∞

mz

k

Q(x)

m
dx = 1 −

∫ mz

k

0

Q(x)

m
dx

For fixed z,

as k → ∞,
zm

k
→ 0 and Q

(mz

k

)

→ 1
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Also
∫ mz

k

0

Q(x)

m
dx→

Q
(

mz
k

)

m
·
mz

k
= Q

(mz

k

) z

k
→

z

k

.̇. as k → ∞

gk(z) →
(

1 −
z

k

)k−1

→ e−z

Thus as k → ∞, the forward recurrence time (multiplied by
m
k ) z = m

k Vk is distributed as a unit exponential distribution. Hence for

large k, Vk = k
mz has an asymptotic exponential distribution with

parameter λ = k/m. Since the asymptotic forward recurrence time is

exponential, the time between events (of the merged process), is

asymptotically exponential.
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Note: A forward recurrence time is exponential if and only if the time
between events is exponential; ie.

qf (x) =
Q(x)

m
= λe−λx if Q(x) = e−λx

and if qf (x) = λe−λx ⇒ Q(x) = e−λx

Additional Note: The merged process is N(t) =

k
∑

i=1

Ni(t). Suppose

E(Ni(t)) = νt. Units of ν are “no. of events per unit time”

The units of m are “time per event”

Thus E(N(t)) = (kν)t and (kν) is mean events per unit time. The units

of

(

1

kν

)

or
(

1
ν

)

is “mean time per event”. Hence m = 1/ν for an

individual process and the mean of the merged process is 1/kν.

Ex. ν = 6 events per year ⇒ m = 12
6 = 2 months (mean time between

events).
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5. Splitting of Poisson Processes

Example: Times between births (in a family) follow an exponential

distribution. The births are categorized by gender.

Example: Times between back pain follow an exponential distribution.

However the degree of pain may be categorized as the required

medication depends on the degree of pain.

Consider a Poisson Process {N(t), t ≥ 0} where in addition to observing

an event, the event can be classified as belonging to one of r possible

categories.

Define Ni(t) = no. of events of type i during (0, t] for i = 1, 2, . . . , r

⇒ N(t) = N1(t) +N2(t) + . . .+Nr(t)
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This process is referred to as “splitting” the process.

Bernoulli Splitting Mechanism

Suppose an event takes place in the interval (t, t+ dt]. Define the

indicator random variable Z(t) = i (i = 1, 2, . . . , r) such that

P{Z(T ) = i|event at (t, t+ dt]} = pi.

Note pi is independent of time.

Then if N(t) =
r

∑

i=1

Ni(t) the counting processes {Ni(t), t ≥ 0} are

Poisson process with parameter (λpi) for i = 1, 2, . . . , r.
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Proof: Suppose over time (0, t], n events are observed of which si are

classified as of time i with
∑r

i=1 si = n.

P{N1(t) = s1, N2(t) = s2, . . . , Nr(t) = sr|N(t) = n}

=
n!

s1!s2! . . . sr!
ps1
1 p

s2
2 . . . psr

r

Hence P{Ni(t) = si, i = 1, . . . , r and N(t) = n}

=
n!

∏r
i=1 si!

ps1
1 p

s2
2 . . . psr

r

e−λt(λt)n

n!

=
r

∏

i=1

(piλt)
sie−piλt

si!
=

r
∏

i=1

P{Ni(t) = si}

which shows that the {Ni(t)} are independent and follow Poisson

distributions with parameters {λpi}.

⇒ {Ni(t), t ≥ 0} are Poisson Processes.

202



Example of Nonhomogenous Splitting

Suppose a person is subject to serious migraine headaches. Some of these
are so serious that medical attention is required. Define

N(t) = no. of migraine headaches in (0, t]

Nm(t) = no. of migraine headaches requiring medical attention

p(τ) = prob. requiring medical attention if

headache occurs at (τ, τ + dτ).

Suppose an event occurs at (τ, τ + dτ); then Prob.of requiring
attention = p(τ)dτ .

Note that conditional on a single event taking place in (0, t], τ is uniform
over (0, t]; i.e.

f(τ |N(t) = 1) = 1/t 0 < τ ≤ t and α =
1

t

∫ t

0

p(τ)dτ
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α =
1

t

∫ t

0

p(τ)dτ

0
x
τ t

↓ ↓
No event (τ, t)Time to event

.̇. P{Nm(t) = k|N(t) = n} =

(

n

k

)

αk(1 − α)(n−k)

P{Nm(t) = k,N(t) = n} =

(

n

k

)

αk(1 − α)n−k e
−λt(λt)n

n!
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P{Nm(t) = k} =

∞
∑

n=k

(

n

k

)

αk(1 − α)n−k e
−λt(λt)n

n!

=
αk

k!
e−λt

∞
∑

n=k

(λt)n

(n− k)!
(1 − α)n−k

=
αk

k!
e−λt(λt)k

∞
∑

n=k

(λt)n−k(1 − α)n−k

(n− k)!

=
αk

k!
(λt)ke−λt · eλt(1−α)

P{Nm(t) = k} = e−αλt (αλt)
k

k!
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4.7 Non-homogeneous Poisson Processes

Preliminaries

Let N(t) follow a Poisson distribution; i.e.

P{N(t) = k} = e−λt(λt)k/k!

Holding t fixed, the generating function of the distribution is

φN(t)(s) = E[e−sN(t)] =

∞
∑

k=0

e−λt(λt)k

k!
e−sk

= e−λt
∞
∑

k=0

(esλt)k

k!
= e−λtee−sλt

φN(t)(s) = eλt[e−s−1] = eλt(z−1) if z = e−s

The mean is E[N(t)] = λt
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Consider the Counting Process {N(t), t ≥ 0} having the Laplace
Transform

(*) φN(t)(s) = eΛ(t)[e−s−1] = eΛ(t)[z−1]

⇒ E[N(t)] = Λ(t), P{N(t) = k} = e−Λ(t) [Λ(t)]k/k!

For the Poisson Process Λ(t) = λt and the mean is proportional to t.
However when E[N(t)] 6= λt we call the process {N(t), t ≥ 0} a

non-homogenized Poisson Process and E(N(t)] = Λ(t)

Λ(t) can be assumed to be continuous and differentiable

d

dt
Λ(t) = Λ′(t) = λ(t).

The quantity λ(t) is called intensity function. Λ(t) can be represented by

Λ(t) =

∫ t

0

λ(x)dx
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If N(t) has the Transform given by (∗) then

P{N(t) = k} = e−Λ(t)Λ(t)k/k!

Since P{Sn > t} = P{N(t) < n}

We have P{S1 > t} = P{N(t) < 1} = P{N(t) = 0}

P (S1 > t) = e−Λ(t)

Thus pdf of time between events is

f(t) = λ(t)e−
∫

t

0
λ(x)dx, Λ(t) =

∫ t

0

λ(x)dx

Note that if H = Λ(t), then H is a random variable following a unit

exponential distribution.
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Assume independent increments; i.e. N(t+ µ) −N(µ) and N(µ) are
independent

L.T. Transform ψ(z, t) = eΛ(t)[z−1] z = e−s

Generating function = E[e−sN(t)] = E[zN(t)]

eΛ(t+u)(z−1) = E[zN(t+u)] = E[zN(t+u)−N(u)+N(u)]

= E[zN(t+u)−N(u)] · E[zN(u)]

= ψeΛ(u)[z−1]

.̇. ψ = E[zN(t+u)−N(u)]] =
eΛ(t+u)(z−1)

eΛ(u)(z−1)
= e[Λ(t+u)−Λ(u)][z−1]

where Λ(t+ u) − Λ(u) =

∫ t+u

u

λ(x)dx

.̇. P{N(t+ u) −N(u) = k} =
e−[Λ(t+u)−Λ(u)][Λ(t+ u) − Λ(u)]k

k!
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Axiomatic Derivation of

Non-Homogenized Poisson Distribution

Assume counting process {N(t), t ≥ 0}

(i) N(0) = 0

(ii) {N(t), t ≥ 0} has independent increments; i.e. N(t+ s) −N(s)

and N(s) are independent

(iii) P{N(t+ h) = k|N(t) = k} = 1 − λ(t)h+ 0(h)

P{N(t+ h) = k + 1|N(t) = k} = λ(t) + 0(h)

P{N(t+ h) = k + j|N(t) = k} = o(h) j ≥ 2

⇒ p{N(t+ s) −N(s) = k} = e−[Λ(t+s)−Λ(s)]2 [Λ(t+ s) − Λ(s)]k

k!
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4.8 Compound Poisson Process

Example. Consider a single hypodermic needle which is shared. The

times between use follow a Poisson Process. However at each use, several

people use it. What is the distribution of total use?

Let {N(t), t ≥ 0} be a Poisson process and {Zn, n ≥ 1} be iid random

variables which are independent of N(t). Define

Z(t) =

N(t)
∑

n=1

Zn

The process Z(t) is called a Compound Poisson Process. It will be

assumed that {Zn} takes on integer values.
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Define A∗(s) = E[e−szn ]. Then

φ(s|N(t) = r) = E[e−sZ(t)] = A∗(s)r

φ(s|N(t) = r) = A∗(s)r

φ(s) =

∞
∑

r=0

φ(s|N(t) = r)P (N(t) = r)

=

∞
∑

r=0

A∗(s)r e
−λt(λt)r

r!
= e−λt

∞
∑

r=0

(A∗(s)λt)r

r!

φ(s) = e−λteA∗(s)λt = e−λt(1−A∗(s))

A∗(s) = E(e−szN ) = 1 − sm1 + s2

2 m2 + . . .

−λt(1 −A∗(s)) = −λt[sm1 −
s2

2 m2 + . . . ], mi = E(zi
n)
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Cumulant function = K(s) = log φ(s)

K(s) = −sm+
s2

2
σ2 + . . .

where (m,σ2) refer to Z(t).

K(s) = −λt[sm1 −
s2

2
m2 + . . . ]

E[Z(t)] = λtm1

V [Z(t)] = λtm2

mi = E(zi
n)
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