6. Birth and Death Processes

6.1 Pure Birth Process (Yule-Furry Process)
6.2 Generalizations
6.3 Birth and Death Processes
6.4 Relationship to Markov Chains
6.5 Linear Birth and Death Processes

6.1 Pure Birth Process (Yule-Furry Process)

Example. Consider cells which reproduce according to the following rules:
i. A cell present at time t has probability $\lambda h+o(h)$ of splitting in two in the interval $(t, t+h)$
ii. This probability is independent of age.
iii. Events between different cells are independent

Time

Non-Probablistic Analysis

$$
n(t)=\text { no. of cells at time } t
$$

$\Rightarrow \quad \lambda n(t) \Delta(t)$ births occur in $(t, t+\Delta t)$
where $\quad \lambda=$ birth rate per single cell.

$$
\begin{aligned}
& n(t+\Delta t)=n(t)+n(t) \lambda \Delta t \\
& \frac{n(t+\Delta t)-n(t)}{\Delta t} \rightarrow n^{\prime}(t)=n(t) \lambda
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{n^{\prime}(t)}{n(t)}=\frac{d}{d t} \log n(t)=\lambda \\
& \log n(t)=\lambda t+c \\
& n(t)=K e^{\lambda t}, \quad n(0)=n_{0} \\
& n(t)=n_{0} e^{\lambda t}
\end{aligned}
$$

Probabilistic Analysis

$N(t)=$ no. of cells at time t
$P\{N(t)=n\}=P_{n}(t)$
Prob. of birth in $(t, t+h)$ if $\{N(t)=n\}=n \lambda h+o(h)$

$$
\begin{gathered}
P_{n}(t+h)=P_{n}(t)(1-n \lambda h+o(h)) \\
\quad+P_{n-1}(t)((n-1) \lambda h+o(h)) \\
P_{n}(t+h)-P_{n}(t)=-n \lambda h P_{n}(t)+P_{n-1}(t)(n-1) \lambda h+o(h) \\
\frac{P_{n}(t+h)-P_{n}(t)}{h}=-n \lambda P_{n}(t)+P_{n-1}(t)(n-1) \lambda+o(h) \text { as } h \rightarrow 0 \\
\hline P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t)
\end{gathered}
$$

Initial condition $\quad P_{n_{0}}(0)=P\left\{N(0)=n_{0}\right\}=1$

$$
P_{n}^{\prime}(t)=-n \lambda P_{n}(t)+(n-1) \lambda P_{n-1}(t) ; \quad P_{n_{0}}(0)=1
$$

Solution:

(1) $\quad P_{n}(t)=\binom{n-1}{n-n_{0}} e^{-\lambda n_{0} t}\left(1-e^{-\lambda t}\right)^{n-n_{0}} \quad n=n_{0}, n_{0}+1, \ldots$

Solution is negative binomial distribution; i.e. Probability of obtaining exactly n_{0} successes in n trials.

Suppose $p=$ prob. of success and $q=1-p=$ prob. of failure. Then in first $(n-1)$ trials results in $\left(n_{0}-1\right)$ successes and $\left(n-n_{0}\right)$ failures followed by success on $n^{t h}$ trial; i.e.
(2)

$$
\binom{n-1}{n_{0}-1} p^{n_{0}-1} q^{n-n_{0}} \cdot p=\binom{n-1}{n-n_{0}} p^{n_{0}} q^{n-n_{0}} n=n_{0}, n_{0}+1, \ldots
$$

If $p=e^{-\lambda t}$ and $q=1-e^{-\lambda t}$
$\Rightarrow(2)$ is same as (1).

Yule studied this process in connection with theory of evolution; i.e. population consists of the species within a genus and creation of new element is due to mutations. Neglects probability of species dying out and size of species.

Furry used same model for radioactive transmutations.
Notes on Negative Binomial Distribution
The geometric distribution is defined as the number of trials to achieve one success for a series of Bernoulli trials; i.e.

Geometric Distribution: $P\{N=n\}=p q^{n-1}, \quad n=1,2, \ldots$
N is number of trials for 1 success

$$
\phi_{N}(s)=E\left(e^{-s N}\right)=p \sum_{n=1}^{\infty} e^{-s n} q^{n-1}=\frac{p}{q} \sum_{n=1}^{\infty}\left(e^{-s} q\right)^{n}
$$

But

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(e^{-s} q\right)^{n}=e^{-s} q /\left(1-e^{-s} q\right) \\
& \phi_{N}(s)=\frac{p}{q} \cdot \frac{e^{-s} q}{1-e^{-s} q}=\frac{p e^{-s}}{1-e^{-s} q}=\frac{p z}{1-q z} \quad \text { if } z=e^{-s} \\
& \phi_{N}(z)=p z(1-q z)^{-1} \\
& \phi_{N}^{\prime}(z)=p\left\{(1-q z)^{-1}+z(1-q z)^{-2} q\right\} \\
& \phi_{N}^{\prime}(1)=p\left\{(1-q)^{-1}+q(1-q)^{-2}\right\}=1+\frac{q}{p}=\frac{p+q}{p}=\frac{1}{p}
\end{aligned}
$$

Similarly $\phi_{N}^{\prime \prime}(1)=\frac{2}{p^{2}}-\frac{2}{p} \Rightarrow V(n)=\frac{1}{p^{2}}-\frac{1}{p}$

Theorem: If $N_{i}\left(i=1,2, \ldots, n_{0}\right)$ are iid geometric random variables with parameter p, then $N=N_{1}+N_{2}+\ldots+N_{n_{0}}$ is a negative binomial distribution having generating function

$$
\begin{gathered}
\phi_{N}(z)=\left(\frac{p z}{1-q z}\right)^{n_{0}}, \quad z=e^{-s} \\
\therefore \quad E(N)=n_{0} / p, \quad V(N)=n_{0}\left[\frac{1}{p^{2}}-\frac{1}{p}\right]
\end{gathered}
$$

If $p=e^{-\lambda t}$ and $N(t)$ is a pure birth process

$$
\begin{aligned}
E[N(t)] & =n_{0} e^{\lambda t} \\
V[N(t)] & =n_{0}\left[e^{2 \lambda t}-e^{\lambda t}\right]
\end{aligned}
$$

6.2 Generalization

In Poisson Process, the prob. of a change during $(t, t+h)$ is independent of number of changes in $(0, t)$. Assume instead that if n changes occur in $(0, t)$, the probability of new change to $n+1$ in $(t, t+h)$ is $\lambda_{n} h+o(h)$. The probability of more than one change is $o(h)$. Then

$$
\begin{aligned}
& P_{n}(t+h)=P_{n}(t)\left(1-\lambda_{n} h\right)+P_{n-1}(t) \lambda_{n-1} h+o(h), n \neq 0 \\
& P_{0}(t+h)=P_{0}(t)\left(1-\lambda_{0} h\right)+o(h) \\
& P_{n}^{\prime}(t)=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t) \\
& P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)
\end{aligned}
$$

Equations can be solved recursively with $P_{0}(t)=P_{0}(0) e^{-\lambda_{0} t}$.

If the initial condition is $P_{n_{0}}(0)=1$, then the resulting equations are:

$$
\begin{gathered}
P_{n}^{\prime}(t)=-\lambda_{n} P_{n}(t)+\lambda_{n-1} P_{n-1}(t), n>n_{0} \\
P_{n_{0}}^{\prime}(t)=-\lambda_{n_{0}} P_{n_{0}}(t)
\end{gathered}
$$

Pure birth process assumed $\lambda_{n}=n \lambda$.
Change of Language
If n transitions take place during $(0, t)$, we may refer to the process as being in state E_{n}. Changes occur $E_{n} \rightarrow E_{n+1} \rightarrow E_{n+2} \rightarrow \ldots$ for the pure birth process.

6.3 Birth and Death Processes

Consider transitions $E_{n} \rightarrow E_{n-1}$ as well as $E_{n} \rightarrow E_{n+1}$ if $n \geq 1$. If $n=0$, we only allow $E_{0} \rightarrow E_{1}$.

Assume that if the process at time t is in E_{n}, then during $(t, t+h)$ the transitions $\quad E_{n} \rightarrow E_{n+1}$ have prob. $\lambda_{n} h+o(h), \quad E_{n} \rightarrow E_{n-1}$ have prob. $\mu_{n} h+o(h)$ and Prob. more than 1 change occurs $=o(h)$

$$
\begin{aligned}
& P_{n}(t+h)= \\
& P_{n}(t)\left\{1-\lambda_{n} h-\mu_{n} h\right\} \\
&+P_{n-1}(t)\left\{\lambda_{n-1} h\right\}+P_{n+1}(t)\left\{\mu_{n+1} h\right\}+o(h) \\
& \Rightarrow P_{n}^{\prime}(t)=-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t)
\end{aligned}
$$

For $n=0$

$$
\begin{gathered}
P_{0}(t+h)=P_{0}(t)\left\{1-\lambda_{0} h\right\}+P_{1}(t) \mu_{1} h+o(h) \\
\Rightarrow \quad P_{0}^{\prime}(t)=-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t)
\end{gathered}
$$

If the initial conditions $P_{n_{0}}(0)=1$ in which case 0 in above is replaced by n_{0}.

If $\lambda_{0}=0$, then $E_{0} \rightarrow E_{1}$ is impossible and E_{0} is an absorbing state.
If $\lambda_{0}=0$, then $P_{0}^{\prime}(t)=\mu_{1} P_{1}(t) \geq 0$ so that $P_{0}(t)$ increases monotonically.
Note: $\lim _{t \rightarrow \infty} P_{0}(t)=P_{0}(\infty)=$ Probability of being absorbed.

$$
\begin{aligned}
P_{0}^{\prime}(t) & =-\lambda_{0} P_{0}(t)+\mu_{1} P_{1}(t) \\
P_{n}^{\prime}(t) & =-\left(\lambda_{n}+\mu_{n}\right) P_{n}(t)+\lambda_{n-1} P_{n-1}(t)+\mu_{n+1} P_{n+1}(t)
\end{aligned}
$$

As $t \rightarrow \infty, P_{n}(t) \rightarrow P_{n}$ (limit) hence $P_{0}^{\prime}(t)=0$ for large t and $P_{n}^{\prime}(t)=0$ for large t. Therefore

$$
\begin{aligned}
0 & =-\lambda_{0} P_{0}+\mu_{1} P_{1} \\
\Rightarrow \quad P_{1} & =\frac{\lambda_{0}}{\mu_{1}} P_{0} \\
0 & =-\left(\lambda_{1}+\mu_{1}\right) P_{1}+\lambda_{0} P_{0}+\mu_{2} P_{2} \\
\Rightarrow \quad P_{2} & =\frac{\lambda_{0} \lambda_{1}}{\mu_{2} \mu_{1}} P_{0} \\
\Rightarrow \quad P_{3} & =\frac{\lambda_{0} \lambda_{1} \lambda_{2}}{\mu_{1} \mu_{2} \mu_{3}} P_{0} \quad \text { etc. }
\end{aligned}
$$

Note that dependence on initial conditions has disappeared.

6.4 Relation to Markov Chains

Define for $t \rightarrow \infty$

$$
\begin{aligned}
P\left(E_{n+1} \mid E_{n}\right) & =\text { Prob. of transition } E_{n} \rightarrow E_{n+1} \\
& =\text { Prob. of going to } E_{n+1} \text { conditional on being in } E_{n} .
\end{aligned}
$$

Similarly define $\quad P\left(E_{n-1} \mid E_{n}\right)$.

$$
\begin{aligned}
& P\left(E_{n+1} \mid E_{n}\right) \propto \lambda_{n}, P\left(E_{n-1} \mid E_{n}\right) \propto \mu_{n} \\
& \Rightarrow P\left(E_{n+1} \mid E_{n}\right)=\frac{\lambda_{n}}{\lambda_{n}+\mu_{n}}, P\left(E_{n-1} \mid E_{n}\right)=\frac{\mu_{n}}{\lambda_{n}+\mu_{n}}
\end{aligned}
$$

Same conditional probabilities hold if it is given that a transition will take place during $(t, t+h)$ conditional on being in E_{n}.
6.5 Linear birth and death processes

$$
\begin{aligned}
& \lambda_{n}=n \lambda, \quad \mu_{n}=n \mu \\
\Rightarrow \quad & P_{0}^{\prime}(t)=\mu P_{1}(t) \\
& P_{n}^{\prime}(t)=-(\lambda+\mu) n P_{n}(t)+\lambda(n-1) P_{n-1}(t)+\mu(n+1) P_{n+1}(t)
\end{aligned}
$$

Steady state behavior is characterized by

$$
\lim _{t \rightarrow \infty} P_{0}^{\prime}(t)=0 \Rightarrow P_{1}(\infty)=0
$$

Similarly as $t \rightarrow \infty P_{n}^{\prime}(\infty)=0$
If $P_{0}(\infty)=1 \Rightarrow$ Probability of ultimate extinction is 1 .
If $P_{0}(\infty)=P_{0}<1$, the relations $P_{1}=P_{2}=P_{3} \ldots=0$ imply with prob. $1-P_{0}$ the population can increase without bounds. The population must either die out or increase indefinitely.

$$
P_{n}^{\prime}(t)=-(\lambda+\mu) n P_{n}(t)+\lambda(n-1) P_{(n-1)}(t)+\mu(n+1) P_{n+1}(t)
$$

Define Mean by $M(t)=\sum_{n=1}^{\infty} n P_{n}(t)$
and consider $M^{\prime}(t)=\sum_{1}^{\infty} n P_{n}^{\prime}(t)$.

$$
\begin{gathered}
M^{\prime}(t)=-(\lambda+\mu) \sum_{1}^{\infty} n^{2} P_{n}(t)+\lambda \sum_{1}^{\infty}(n-1) n P_{(n-1)}(t) \\
+\mu \sum_{1}^{\infty}(n+1) n P_{n+1}(t)
\end{gathered}
$$

Write $(n-1) n=(n-1)^{2}+(n-1), \quad(n+1) n=(n+1)^{2}-(n+1)$

$$
\begin{aligned}
M^{\prime}(t)= & -(\lambda+\mu) \sum_{1}^{\infty} n^{2} P_{n}(t) \\
& +\lambda \sum_{1}^{\infty}(n-1)^{2} P_{n-1}(t)+\mu\left[\sum_{1}^{\infty}(n+1)^{2} P_{n+1}(t)+1 \cdot P_{1}(t)\right] \\
& +\lambda \sum_{1}^{\infty}(n-1) P_{n-1}(t)-\mu\left[\sum_{1}^{\infty}(n+1) P_{n+1}(t)+P_{1}(t)\right] \\
& \Rightarrow M^{\prime}(t)=\lambda \sum_{1}^{\infty} n P_{n}(t)-\mu \sum_{1}^{\infty} n P_{n}(t) \\
& =(\lambda-\mu) M(t) \\
M(t)= & n_{0} e^{(\lambda-\mu) t} \text { if } P_{n_{0}}(0)=1
\end{aligned}
$$

$$
M(t)=n_{0} e^{(\lambda-\mu) t}
$$

$M(t) \rightarrow 0$ or ∞ depending on $\lambda<\mu$ or $\lambda>\mu$.
Similarly if $M_{2}(t)=\sum_{1}^{\infty} n^{2} P_{n}(t)$ one can show

$$
M_{2}^{\prime}(t)=2(\lambda-\mu) M_{2}(t)+(\lambda+\mu) M(t)
$$

and when $\lambda>\mu$, the variance is

$$
n_{0} e^{2(\lambda-\mu) t}\left\{1-e^{(\mu-\lambda) t}\right\} \frac{\lambda+\mu}{\lambda-\mu}
$$

