7. Markov Chains (Discrete-Time Markov Chains)

7.1. Introduction: Markov Property

7.2. Examples

- Two States
- Random Walk
- Random Walk (one step at a time)
- Gamblers' Ruin
- Urn Models
- Branching Process
7.3. Marginal Distribution of X_{n}
- Chapman-Kolmogorov Equations
- Urn Sampling
- Branching Processes

Nuclear Reactors
Family Names
7.4 Appendix: Notes on Matrices: I

7.1. Introduction: Markov Chains

Consider a system which can be in one of a countable number of states $1,2,3, \ldots$. The system is observed at the time points $n=0,1,2, \ldots$.

Define X_{n} to be a random variable denoting the state of the system at "time" n. Suppose the history of the system up to time n is:
$\left\{X_{0}, X_{1}, \ldots, X_{n}\right\}$. The probability distribution of X_{n+1} would ordinarily depend on the past history; i.e.

$$
P\left\{X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right\}
$$

The process is said to have the Markov property if

$$
P\left\{X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right\}=P\left\{X_{n+1} \mid X_{n}\right\}
$$

$$
P\left\{X_{n+1} \mid X_{0}, \ldots, X_{n}\right\}=P\left\{X_{n+1} \mid X_{n}\right\}
$$

The stochastic process is called a Markov Chain. If the possible states are denoted by integers, then we have

$$
\begin{gathered}
P\left\{X_{n+1}=j \mid X_{n}=\right. \\
\left.i, X_{n-1}=i_{n-1}, X_{n-2}=i_{n-2}, \ldots, X_{0}=i_{0}\right\} \\
=P\left\{X_{n+1}=j \mid X_{n}=i\right\}
\end{gathered}
$$

Define

$$
p_{i j}(n)=P\left\{X_{n+1}=j \mid X_{n}=i\right\}
$$

If S represents the state space and is countable, then the Markov Chain is called Time-Homogeneous if

$$
p_{i j}(n)=p_{i j} \quad \text { for all } i, j \in S \text { and } n \geq 0
$$

We will only be dealing with Time Homogeneous Markov Chains.

Note: Sometimes this process is referred to as a Discrete Time Markov Chain (DTMC).

Define $P=\left(p_{i j}\right)$.
If S has m states, then $P=\left(p_{i j}\right) \underline{m \times m}$ matrix.
P is often called the one-step transition probability matrix.

Definition: A matrix $P=\left(P_{i j}\right)$ is called stochastic if
(i) $\quad p_{i j} \geq 0 \quad i, j \in S$
(ii) $\sum_{j \in S} p_{i j}=\sum_{j=1}^{m} p_{i j}=1$ for all $i \in S$.

$$
\begin{aligned}
X_{0} & =\text { initial state } \\
a_{i} & =P\left\{X_{0}=i\right\}=\text { Prob. of the initial state } X_{0}=i
\end{aligned}
$$

The probabilities a_{i} and $P=\left(p_{i j}\right)$ completely determine the stochastic process.

Examples

$$
\begin{aligned}
P\left\{X_{0}=i_{0}, X_{1}=i_{1}\right\} & =P\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} P\left\{X_{0}=i_{0}\right\} \\
& =p_{i_{0} i_{1}} a_{i_{0}} \\
P\left\{X_{0}=i_{0}, X_{1}=i_{1}, X_{2}=i_{2}\right\} & =P\left\{X_{0}=i_{0}\right\} \cdot P\left\{X_{1}=i_{1} \mid X_{0}=i_{0}\right\} \\
& \cdot P\left\{X_{2}=i_{2} \mid X_{1}=i_{1}\right\} \\
& =a_{i_{0}} p_{i_{0} i_{1}} p_{i_{1} i_{2}}
\end{aligned}
$$

7.2. Examples

Example: Two States

Suppose a person can be in one of two states - "healthy" or "sick". Let $\left\{X_{n}\right\} n=0,1, \ldots$ refer to the state at time n where $X_{n}= \begin{cases}1 & \text { if healthy } \\ 0 & \text { if sick }\end{cases}$

Define

$$
\begin{aligned}
& P\left\{X_{n+1}=0 \mid X_{n}=0\right\}=\alpha \\
& P\left\{X_{n+1}=1 \mid X_{n}=1\right\}=\beta
\end{aligned}
$$

Transition Matrix

$$
P=\left[\begin{array}{cc}
\alpha & 1-\alpha \\
1-\beta & \beta
\end{array}\right]
$$

Transition Diagram

Ex. Independent Events
Let $\left\{X_{n}\right\}$ be iid with

$$
P\left\{X_{n}=k\right\}=p_{k} \text { for } k=0,1, \ldots
$$

and let the state space be $S=\{0,1,2, \ldots\}$

$$
\begin{aligned}
p_{j k}=P\left\{X_{n+1}\right. & \left.=k \mid X_{n}=j\right\}=P\left\{X_{n+1}=k\right\}=p_{k} \\
P & =\left[\begin{array}{cccc}
p_{0} & p_{1} & p_{2} & \ldots \\
p_{0} & p_{1} & p_{2} & \cdots \\
\vdots & \vdots & \vdots &
\end{array}\right]
\end{aligned}
$$

Example: Random Walk on Non-negative Real Line

Define $\left\{Z_{n}\right\}$ to be iid with $p_{k}=P\left\{Z_{n}=k\right\}$ for $k=0,1,2, \ldots$
Define $X_{0}=0, \quad X_{n}=\sum_{k=1}^{n} Z_{k}$
Then $\left\{X_{n}\right\}$ is a Markov Chain with state space $S=\{0,1,2, \ldots\}$;

$$
\begin{gathered}
P\left\{X_{n+1}=j \mid X_{n}=i\right\}=P\left\{Z_{n+1}=j-i\right\}=p_{j-i} \\
P=\begin{array}{c}
\underline{0} \\
\underline{1} \\
0 \\
1 \\
2 \\
3 \\
\vdots
\end{array}\left[\begin{array}{ccccc}
p_{0} & p_{1} & p_{2} & p_{3} & \cdots \\
0 & p_{0} & p_{1} & p_{2} & \cdots \\
0 & 0 & p_{0} & p_{1} & \cdots \\
0 & 0 & 0 & p_{0} & \cdots \\
\vdots & & & &
\end{array}\right]
\end{gathered}
$$

Example: Random Walk (one step at a time)

$$
\begin{gathered}
P\left\{X_{n+1}=i+1 \mid X_{n}=i\right\}=p_{i}, P\left\{X_{n+1}=i+1 \mid X_{n}=j\right\}=0 \text { for } j \neq i \\
P\left\{X_{n+1}=i-1 \mid X_{n}=i\right\}=q_{i}, P\left\{X_{n+1}=i-1 \mid X_{n}=j\right\}=0 \text { for } j \neq i \\
P\left\{X_{n+1}=i \mid X_{n}=i\right\}=r_{i}=1-p_{i}-q_{i}
\end{gathered}
$$

State Space: $S=\{0,1,2, \ldots\}$
(i.) $\quad q_{0}=0$ means that state 0 is reflecting barrier.
(ii.) If $r_{0}=1$, then once in state 0 it can never leave.
(iii.) If $p_{N}=0 \Rightarrow S=\{0,1,2, \ldots, N\}$
(iv.) If $p_{N}=0$ and $r_{N}=1 \Rightarrow N$ is absorbing ($r_{N}=0, N$ is reflecting barrier.)

Example: Gambler's Ruin

Gamblers: A, B have a total of N dollars
Game: Toss Coin
If $H \Rightarrow A$ receives $\$ 1$ from B
$T \Rightarrow B$ receives $\$ 1$ from A

$$
P(H)=p, \quad P(T)=q=1-p
$$

$X_{n}=$ Amount of money A has after n plays

$$
P\left\{X_{n+1}=X_{n}+1 \mid X_{n}\right\}=p
$$

$$
P\left\{X_{n+1}=X_{n}-1 \mid X_{n}\right\}=q
$$

.....Game ends if $X_{n}=0$ or $X_{n}=N$

State space $=\{0,1,2, \ldots, N\}$

$$
X_{n+1}
$$

$$
\begin{aligned}
& \underline{0} \quad \underline{1} \quad \underline{2} \quad \underline{3} \quad \cdots \quad \underline{N-2} \underline{N-1} \underline{N} \\
& \begin{array}{c}
\\
\\
X_{n}
\end{array} \begin{array}{c}
0 \\
1 \\
\\
\\
\\
\\
\\
\\
\\
\vdots \\
N
\end{array}\left[\begin{array}{cccccccc}
1 & 0 & 0 & 0 & \cdots & 0 & 0 & 0 \\
q & 0 & p & 0 & \cdots & 0 & 0 & 0 \\
0 & q & 0 & p & \cdots & 0 & 0 & 0 \\
& & & & & & & \\
0 & 0 & 0 & 0 & \cdots & q & 0 & p \\
0 & 0 & 0 & 0 & \cdots & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Transition Diagram for
Gambler's Ruin

Example: Urn Models (Ehrenfest Urn Model)

Two urns: A, B each containing N balls (Balls may be red or white).
Experiment consists of picking one ball at a time from each urn at random and placing them in the opposite urn.
$X_{n}=$ no. of white balls in urn A after n repetitions. Assume $X_{0}=N($ all white balls in $A)$.

If $X_{n}=i \Rightarrow \quad i$ white and $N-i$ red in A
i red and $N-i$ white in B
$P\left\{X_{n+1}=i+1 \mid X_{n}=i\right\}=P\{$ white ball from B and red ball from $A\}$

$$
=\left(1-\frac{i}{N}\right)^{2}=p_{i, i+1} \quad i \neq 0, N
$$

$$
P\left\{X_{n+1}=i-1 \mid X_{n}=i\right\}=P\{\text { white from } A \text { and red from } B\}
$$

$$
\begin{aligned}
= & \left(\frac{i}{N}\right)^{2}=p_{i, i-1} \\
P\left\{X_{n+1}=i \mid X_{n}=i\right\}= & P\{\text { white from } A \text { and } B\} \\
& +P\{\text { Red from } A \text { and } B\} \\
= & 2\left(\frac{i}{N}\right)\left(1-\frac{i}{N}\right)=p_{i i}
\end{aligned}
$$

Example: Branching Process

$X_{n}=$ no. of individuals in $n^{t h}$ generation beginning with

$$
X_{0}=1(1 \text { individual })
$$

$Y_{i, n}=$ no. of offspring of the $i^{t h}$ person in the $n^{\text {th }}$ generation

$$
X_{n+1}=Y_{1, n}+Y_{2, n}+\ldots+Y_{X_{n}, n}=\sum_{i=1}^{X_{n}} Y_{i, n}
$$

Assume $\left\{Y_{i, n}\right\}$ are iid random variables.

$$
\begin{aligned}
p_{i j} & =P\left\{X_{n+1}=j \mid X_{n}=i\right\}=P\left\{\sum_{i=1}^{X_{n}} Y_{i, n}=j \mid X_{n}=i\right\} \\
& =P\left\{\sum_{r=1}^{i} Y_{r, n}=j\right\}
\end{aligned}
$$

Process: $\left\{X_{n}\right\}$ is called a branching process
How long does it take for a family to become extinct?
What is distribution of size in the $n^{\text {th }}$ generation?
7.3. Marginal Distribution of X_{n}

$$
\text { Define } \begin{aligned}
a_{j}^{(n)} & =P\left\{X_{n}=j\right\}=\sum_{i \in S} P\left\{X_{n}=j \mid X_{0}=i\right\} P\left\{X_{0}=i\right\} \\
& =\sum_{i \in S} P\left\{X_{n}=j \mid X_{0}=i\right\} a_{i} \\
p_{i j}^{(n)} & =\text { Prob. of going from } i \rightarrow j \text { in } n \text { steps } \\
p_{i j}^{(n)} & =\text { n-step transition probabilities }
\end{aligned}
$$

Th. Chapman-Kolmogorov Equations

$$
p_{i j}^{(n)}=\sum_{r \in S} p_{i r}^{(k)} p_{r j}^{(n-k)} \quad \underline{\text { Chapman-Kolmogorov Equations }}
$$

where k is a fixed integer $0 \leq k \leq n$

Th. $\quad P^{(n)}=\left(p_{i j}^{(n)}\right)=P^{n}$
Proof. $P\left\{X_{0}=j \mid X_{0}=i\right\}=\left\{\begin{array}{lll}1 & \text { if } & i=j \\ 0 & \text { if } & i \neq j\end{array}\right.$
$\Rightarrow P^{0}=I$. Also $P^{1}=P$. Assume theorem is true for $n=k$. We will show it is true for $n=k+1$.

$$
P^{(k+1)}=P^{(k)} P=P^{k} P=P^{k+1}
$$

Th. $\quad a^{(n)}=$ row vector of $a_{j}^{(n)}=\left(a_{1}^{(n)}, a_{2}^{(n)}, \ldots\right)$

$$
a^{(n)}=a P^{n}
$$

Proof. $a^{(n)}=a^{(0)} P^{(n)}=a P^{n}$

Urn Sampling (Continuation)

$$
E\left(X_{n} \mid X_{0}\right)=\sum_{i=0}^{X_{0}} i P\left\{X_{n}=i \mid X_{0}\right\} \quad \begin{aligned}
& \text { Expected number of white } \\
& \\
& \text { balls in urn } A \text { with } n \\
& \\
& \\
& \\
& \\
& \\
& \text { draws given } X_{0}=\text { no. of } \\
&
\end{aligned}
$$

$$
=(0,0, \ldots, 1) P^{n}\left[\begin{array}{c}
0 \\
1 \\
2 \\
\vdots \\
X_{0}
\end{array}\right]
$$

Suppose $X_{0}=10$

\underline{n}	$\underline{E\left(X_{n} \mid X_{0}=10\right)}$	\underline{n}	$\underline{E\left(X_{n} \mid X_{0}=10\right)}$
2	8.2	12	5.3
4	7.0	14	5.2
6	6.3	16	5.14
8	5.8	18	5.09
10	5.5	20	5.06

Ex. Branching Process (Continuation)

$$
\begin{gathered}
m_{n}=E\left(X_{n}\right), \quad \sigma_{n}^{2}=\operatorname{Var} X_{n}, \quad m=E\left(Y_{i, n}\right), \sigma^{2}=V\left(Y_{i}, n\right) \\
m_{n}=E\left(X_{n}\right)=E\left(\sum_{i=1}^{X_{n-1}} Y_{i, n-1}\right)=m E\left(X_{n-1}\right) \\
\Rightarrow \quad m_{n}=m m_{n-1} \\
\quad m_{n}=m^{n}, \quad m=E\left(Y_{i, n}\right) \\
\quad \operatorname{Var}\left(X_{n} \mid X_{n-1}\right)=\operatorname{Var}\left(\sum_{i=1}^{X_{n-1}} Y_{i, n}\right)=\sigma^{2} X_{n-1}
\end{gathered}
$$

Recall $\operatorname{Var} Z=E_{Y} \operatorname{Var}(Z \mid Y)+\operatorname{Var}_{Y} E(Z \mid Y)$
In our example $Z=X_{n}, \quad Y=X_{n-1}$
$\operatorname{Var}\left(X_{n} \mid X_{n-1}\right)=\operatorname{Var}\left(\sum_{1}^{X_{n-1}} Y_{i, n-1} \mid X_{n-1}\right)=X_{n-1} \sigma^{2}$, if X_{n-1} fixed

$$
\begin{aligned}
& E\left(X_{n} \mid X_{n-1}\right)=E\left(\sum_{1}^{X_{n-1}} Y_{i, n-1} \mid X_{n-1}\right)=X_{n-1} m \\
& \therefore \operatorname{Var} X_{n}=\sigma^{2} E\left(X_{n-1}\right)+\operatorname{Var}\left(X_{n-1} m\right) \\
& \sigma_{n}^{2}=\sigma^{2} m_{n-1}+m^{2} \operatorname{Var} X_{n-1} \\
& \sigma_{n}^{2}=\sigma^{2} m_{n-1}+m^{2} \sigma_{n-1}^{2}
\end{aligned} \quad \begin{aligned}
\sigma_{n}^{2} & =\sigma^{2} m_{n-1}+m^{2} \sigma_{n-1}^{2} \\
m_{n} & =m^{n}
\end{aligned}
$$

Case 1: $\quad m=1\left(\sigma_{0}^{2}=0\right)$

$$
\begin{aligned}
& \sigma_{n}^{2}=\sigma^{2}+\sigma_{n-1}^{2} \\
& \Rightarrow \quad \sigma_{1}^{2}=\sigma^{2}, \sigma_{2}^{2}=2 \sigma^{2}, \sigma_{3}^{2}=3 \sigma^{2} \\
& \sigma_{n}^{2}=n \sigma^{2} \quad \text { if } m=1
\end{aligned}
$$

Case 2: $m \neq 1$

$$
\begin{aligned}
\sigma_{n}^{2}= & \sigma^{2} m^{n-1}+m^{2} \sigma_{n-1}^{2} \\
\sigma_{1}^{2}= & \sigma^{2} \quad\left(\sigma_{0}^{2}=0\right) \\
\sigma_{2}^{2}= & \sigma^{2} m+m^{2} \sigma_{1}^{2}=\sigma^{2} m\left[\frac{m^{2}-1}{m-1}\right] \\
\sigma_{3}^{2}= & \sigma^{2} m^{2}+m^{2} \sigma_{2}^{2}=\sigma^{2} m^{2}+m^{2}\left[\sigma^{2} m\left(\frac{m^{2}-1}{m-1}\right)\right] \\
= & \sigma^{2} m^{2}\left[\frac{m^{3}-1}{m-1}\right] \\
& \vdots \\
\vdots & \\
\sigma_{n}^{2}= & \sigma^{2} m^{n-1}\left[\frac{m^{n}-1}{m-1}\right] m \neq 1
\end{aligned}
$$

Use of Generating Functions

$$
\begin{aligned}
G(z) & =\sum_{n=1}^{\infty} \sigma_{n}^{2} z^{n} \quad\left(\sigma_{0}^{2}=0\right) \\
\sigma_{n}^{2} & =\sigma^{2} m^{n-1}+m^{2} \sigma_{n-1}^{2} \\
\sum_{1}^{\infty} \sigma_{n}^{2} z^{n} & =\sigma^{2} \sum_{1}^{\infty} m^{n-1} z^{n}+m^{2} \sum_{n=1}^{\infty} \sigma_{n-1}^{2} z^{n} \\
G(z) & =\sigma^{2} z \sum_{n=1}^{\infty}(m z)^{n-1}+m^{2} z \sum_{n=1}^{\infty} \sigma_{n-1}^{2} z^{n-1} \\
G(z) & =\sigma^{2} z \frac{1}{1-m z}+m^{2} z G(z) \\
G(z)\left[1-m^{2} z\right] & =\sigma^{2} z /(1-m z) \\
G(z) & =\sigma^{2} z /\left(1-m^{2} z\right)(1-m z)
\end{aligned}
$$

$$
\begin{aligned}
G(z) & =\sigma^{2} z /\left(1-m^{2} z\right)(1-m z) \\
& =\sigma^{2} z\left\{\sum_{r=0}^{\infty}\left(m^{2} z\right)^{r} \sum_{s=0}^{\infty}(m z)^{s}\right\} \\
& =\sigma^{2} z\left\{\sum_{r=0}^{\infty} \sum_{s=0}^{\infty} m^{2 r+s} z^{r+s}\right\}, n=r+s \quad 0 \leq r \leq n \\
& =\sigma^{2} z \sum_{n=0}^{\infty} z^{n} m^{n} \sum_{r=0}^{n} m^{r}=\sigma^{2} z \sum_{n=0}^{\infty} z^{n} m^{n}\left(\frac{1-m^{n+1}}{1-m}\right) \\
& =\sigma^{2} \sum_{0}^{\infty} z^{n+1} m^{n}\left(\frac{1-m^{n+1}}{1-m}\right) \\
\Rightarrow \sigma_{n+1}^{2} & =\sigma^{2} m^{n}\left(\frac{m^{n+1}-1}{m-1}\right) \text { or } \sigma_{n}^{2}=\sigma^{2} m^{n-1}\left(\frac{m^{n}-1}{m-1}\right) \\
m_{n} & =m^{n}
\end{aligned}
$$

If $m>1, m_{n} \rightarrow \infty$ as $n \rightarrow \infty$
If $m<1, \quad m_{n} \rightarrow 0$ as $n \rightarrow \infty$
If $m=1, m_{n}=m$ always

Application: Nuclear Reactors

A neutron ($0^{t h}$ generation) is introduced into a fissionable material. If it hits a nucleus it will produce a random number of new neutrons ($1^{\text {st }}$ generation). This process continues as each new neutron behaves like the original neutron.

$$
X_{n}=\text { No. of neutrons after } n \text { collisions }
$$

$$
m_{n}=m^{n}
$$

If $m>1$, each neutron produces on average more than one neutron and reaction is explosive-(nuclear explosion or meltdown).

If $m<1$, reaction eventually dies out.

In nuclear power station, $m>1$ to reach "hot stage". Once hot, moderator rods are inserted to remove neutrons and reduce m. Hence reactor is controlled. The moderator rods are continually removed and inserted to keep temperature in a given range. (Heat is converted to electricity).

Application: Family Names

Consider only male offspring who will carry family name. If $m<1$, family name will eventually die out as $m^{n} \rightarrow 0$. Males in historical times would keep marrying until a wife could produce a male heir.
i.e. $P\left\{X_{n} \geq 1\right\}=1 \Rightarrow m \geq 1$.

7.4 Appendix: Notes on Matrices: I

$$
\text { Let } \begin{array}{ll}
A: & n \times n \text { matrix } \\
& x_{i}: \\
n \times 1 \text { vector }
\end{array}
$$

Eigenvalues:
$|A-\lambda I|=0 \quad$ Polynomial in λ of degree n. The eigenvalues
$\lambda_{1}, \ldots, \lambda_{n}$ are the zeros of the polynomial.
$\underline{\text { Eigenvectors }}$
If $A x_{i}=\lambda_{i} x_{i} \quad i=1, \ldots, n$ then $x_{i}(n \times 1)$ are the right eigenvectors associated with λ_{i}.

If $y_{i}^{\prime} A=\lambda_{i} y_{i}^{\prime} \quad i=1, \ldots, n$ then $y_{i}(n \times 1)$ are the left eigenvectors associated with λ_{i}.

$$
\Rightarrow x_{i}^{\prime} y_{j}=0, \quad i \neq j
$$

Proof: $A x_{i}=\lambda_{i} x_{i}, y_{j}^{\prime} A x_{i}=\lambda_{j} y_{j}^{\prime} x_{i}=\lambda_{i} y_{j}^{\prime} x_{i}$
If $y_{j}^{\prime} x_{i} \neq 0$, then $\lambda_{i}=\lambda_{j}$ which is false. Hence $y_{j}^{\prime} x_{i}=0$.
Scale x_{i}, and y_{i} so that $x_{i}^{\prime} y_{i}=1$
Define

$$
\begin{aligned}
X^{n \times n} & =\left[x_{1}, x_{2}, \ldots, x_{n}\right] \\
Y^{n \times n} & =\left[\begin{array}{c}
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{n}^{\prime}
\end{array}\right]
\end{aligned}
$$

Therefore $A X=X D$ and $Y A=D Y$ where $D=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$. We can write $A=X D X^{-1}=Y^{-1} D Y$. Hence $X=Y^{-1}$.

Since

$$
\begin{aligned}
A & =X D X^{-1} \\
A^{2} & =X D X^{-1} X D X^{-1}=X D^{2} X^{-1} \\
A^{m} & =X D^{m} X^{-1}, \quad D^{m}=\operatorname{diag}\left(\lambda_{1}^{m}, \ldots, \lambda_{n}^{m}\right)
\end{aligned}
$$

Idempotent Decomposition $A^{m}=\sum_{i=1}^{n} \lambda_{i}^{m} x_{i} y_{i}^{\prime}=\sum_{i=1}^{n} \lambda_{i}^{m} E_{i}$

$$
E_{i}=x_{i} y_{i}^{\prime} \text { and } E_{i}^{2}=E_{i}, \quad E_{i} E_{j}=0 i \neq j
$$

If A is stochastic $\underline{1}^{\prime} A=\underline{1}^{\prime}$ (columns add to unity), then $\lambda=1$ is the largest eigenvalue.

$$
\begin{aligned}
P & =\sum_{1}^{n} \lambda_{i} E_{i}, \quad P^{m}=\sum_{1}^{n} \lambda_{i}^{m} E_{i} \\
\text { as } m \rightarrow \infty, \lim _{m \rightarrow \infty} P^{m} & =E_{1}=y_{1} x_{1}^{\prime}
\end{aligned}
$$

