8. Statistical Equilibrium and Classification of States: Discrete Time Markov Chains

8.1 Review
8.2 Statistical Equilibrium
8.3 Two-State Markov Chain
8.4 Existence of $P(\infty)$
8.5 Classification of States
8.6 Terminology (Summary)

Discrete Time Markov Chains

8.1 Review
$\left\{X_{n}\right\}$ possible states $n=0,1,2, \ldots$
Markov Property

$$
P\left\{X_{n+1} \mid X_{0}, X_{1}, \ldots, X_{n}\right\}=P\left\{X_{n+1} \mid X_{n}\right\}
$$

$p_{i j}(n)=P\left\{X_{n+1}=j \mid X_{n}=i\right\} \quad$ 1-step probabilities
If $p_{i j}(n)=p_{i j} \quad$ the process is termed Time Homogeneous
$S=$ state space $=\{0,1,2, \ldots\}$
$\sum_{j \in S} p_{i j}=1, \quad p_{i j} \geq 0$
$P=\left(p_{i j}\right) \quad i, j \in S \quad$ Stochastic Matrix
$a_{i}=P\left\{X_{0}=i\right\} \quad X_{0}=$ initial state
$\left\{a_{i}\right\}$ and P completely determine the process

$$
\begin{aligned}
a_{j}^{(n)} & =P\left\{X_{n}=j\right\}=\text { Prob. of being at } X_{n}=j \text { in } n \text { steps } \\
& =\sum_{i \in S} P\left\{X_{n}=j \mid X_{0}=i\right\} a_{i} \\
p_{i j}^{(n)} & =\text { Prob. of going from } i \rightarrow j \text { in } n \text { steps }
\end{aligned}
$$

Chapman-Kolmogorov Equations

for any $k(0 \leq k \leq n) \quad p_{i j}^{(n)}=\sum_{i \in S} p_{i r}^{(k)} p_{r j}^{(n-k)}$
or if $P^{(n)}=\left(p_{i j}^{(n)}\right) \quad P^{(n)}=P^{(k)} P^{(n-k)}$

$$
P^{(n)}=P^{n} \Rightarrow a^{(n)}=a P^{n}
$$

where

$$
\begin{array}{lll}
a & =\left(a_{1}, a_{2}, \ldots, a_{m}\right) & (1 \times m) \\
a^{(n)} & =\left(a_{1}^{(n)}, a_{2}^{(n)}, \ldots, a_{m}^{(n)}\right) & (1 \times m) \\
P & =\left(P_{i j}\right) \quad(m \times m)
\end{array}
$$

8.2 Statistical Equilibrium

Question: After a sufficiently long time does the system settle down into a condition of statistical equilibrium?

$$
a^{(n)}=a P^{n} \quad a^{(n)}: 1 \times k, \quad a: 1 \times k, \quad P: k \times k
$$

Define $\Pi=\lim _{n \rightarrow \infty} a^{(n)}=a \lim _{n \rightarrow \infty} P^{n}=a P^{(\infty)}$
In order to settle into statistical equilibrium $P^{(\infty)}$ must exist.

Ex.

$$
\begin{aligned}
& P=\left[\begin{array}{lll}
.1 & .2 & .7 \\
.2 & .4 & .4 \\
.1 & .3 & .6
\end{array}\right] \quad a=\left[\begin{array}{l}
.13 \\
.31 \\
.56
\end{array}\right] \\
& P^{3}=\left[\begin{array}{lll}
.131 & .319 & .550 \\
.132 & .318 & .550 \\
.132 & .319 & .549
\end{array}\right] a^{(3)}=\left[\begin{array}{l}
.132 \\
.319 \\
.549
\end{array}\right] \\
& P^{(\infty)}=\left[\begin{array}{lll}
.132 & .319 & .549 \\
.132 & .319 & .549 \\
.132 & .319 & .549
\end{array}\right] a^{(\infty)}=\left[\begin{array}{l}
.132 \\
.319 \\
.549
\end{array}\right]
\end{aligned}
$$

Limit exists

Example:

$$
P=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

(1) can only return to (1) in 2 steps
(2) can only return to (2) in 2 steps

$$
\begin{gathered}
P^{2}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=I \\
P^{3}=P, \quad P^{2 n}=I, \quad P^{2 n+1}=P, I+P=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{gathered}
$$

Limit does not exist.

Consider the average

$$
\begin{aligned}
P^{*}(2 n+1) & =\frac{I+P+P^{2}+\ldots+P^{2 n+1}}{2 n+2}=\frac{(n+1)}{2(n+1)}(I+P) \\
& =\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \text { as } I+P=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) \\
\therefore \quad & \lim _{n \rightarrow \infty} \frac{I+P+P^{2}+\ldots+P^{2 n+1}}{2 n+2}=\frac{1}{2}\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)
\end{aligned}
$$

In general if $P^{(\infty)}$ does not exist

$$
P^{*}(\infty)=\lim _{n \rightarrow \infty} \frac{I+P+P^{2}+\ldots+P^{n}}{n+1} \quad \text { does exist }
$$

If $P^{(\infty)}$ does exist, $\quad P^{(\infty)}=P^{*}(\infty)$.

$$
P^{*}(n)=\frac{I+P+P^{2}+\ldots+P^{n}}{n+1}
$$

Returning to problem of equilibrium distribution

$$
a^{(n)}=a^{(n-1)} P \quad \Pi=\lim _{n \rightarrow \infty} a^{(n)}
$$

Assume $P^{(\infty)}$ exists, then $\Pi=\Pi P$ or $\Pi(I-P)=0$
resulting in linear equations in Π. A solution exists if $|I-P|=0$.
Recall $|P-\lambda I|=0$ determines the eigenvalues.
Hence if $\lambda=1$ is an eigenvalue $|I-P|=0$.
Since P is stochastic $\sum_{j \in S} p_{i j}=1$, all row sums are unity; i.e.

$$
P \underline{1}=\underline{1} \quad \underline{1}^{\prime}=(1,1, \ldots, 1)
$$

The eigenvectors are defined by $P x=\lambda x$. In our case
$\lambda=1, \quad x=\underline{1}$ which shows $|P-I|=0$

$$
\Pi=\Pi P, \quad \Pi=\lim _{n \rightarrow \infty} a^{(n)}
$$

Note however

$$
P^{(n)}=P^{n}=P^{n-1} P
$$

and as $n \rightarrow \infty$,

$$
\begin{aligned}
& P^{(\infty)}=P^{(\infty)} P \\
& \quad P^{(\infty)}(I-P)=0
\end{aligned}
$$

Thus $\underline{1} \Pi=P^{(\infty)}$. Since $P^{(\infty)}$ does not involve \underline{a} (initial conditions), the system in statistical equilibrium is independent of the initial conditions.
Note: $P(\infty): k \times k \quad \underline{1} \Pi=\left(\begin{array}{l}\Pi \\ \Pi \\ \vdots \\ \Pi\end{array}\right): k \times k$

$\underline{\text { Spectral Decomposition }}$

Suppose max eigenvalue is $\lambda_{1}=1$, all others are $\left|\lambda_{i}\right|<1$ and λ_{1} is of multiplicity one. The spectral decomposition is defined by being able to write P as:

$$
\begin{aligned}
& P=\sum_{i=1}^{k} \lambda_{i} E_{i}=E_{1}+\sum_{2}^{k} \lambda_{i} E_{i} \\
& P \quad=E_{1}+\sum_{2}^{k} \lambda_{i} E_{i}, \quad E_{i}^{2}=E_{i} \quad E_{i} E_{j}=0 \quad i \neq j \\
& P^{n}=E_{1}+\sum_{2}^{k} \lambda_{i}^{n} E_{i} \rightarrow E_{1} \text { as } n \rightarrow \infty \\
& P^{\infty}=\lim _{n \rightarrow \infty} P^{n}=E_{1}
\end{aligned}
$$

E_{1} can be found from left and right eigenvalues of P with $\lambda_{1}=1$.

$$
\begin{aligned}
P x & =\lambda_{1} x=x \quad \text { (right eigenvector) } x: k \times 1 \\
x & =\underline{1}
\end{aligned} \begin{aligned}
y^{\prime} P & =\lambda_{1} y^{\prime} \quad \text { (left eigenvector) } y: k \times 1
\end{aligned} ~ \begin{aligned}
& \text { Choose scale of } y \text { such that } \underline{1}^{\prime} y=\sum_{1}^{k} y_{i}=1 \\
& E_{1}=x y^{\prime}=\underline{1} y^{\prime} \\
& E_{1}^{2}=\underline{1} y^{\prime} \underline{1} y^{\prime}=\underline{1} y^{\prime}=E_{1}
\end{aligned}
$$

Conclusion: If P has only a single eigenvalue equal to 1 and all others are $\left|\lambda_{i}\right|<1 \Rightarrow P^{\infty}=E_{1}$ can easily be found.

8.3 Ex. Two State Markov Chains

$$
S=\{0,1\} \quad P=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)
$$

We wish to write the spectral decomposition of $P . \Rightarrow$ Find the eigenvalues and eigenvectors

$$
\begin{gathered}
|P-\lambda I|=0 \Rightarrow\left|\begin{array}{cc}
1-\alpha-\lambda & \alpha \\
\beta & 1-\beta-\lambda
\end{array}\right|=0 \\
(1-\alpha-\lambda)(1-\beta-\lambda)-\alpha \beta=0 \Rightarrow \lambda^{2}-\lambda(2-\alpha-\beta)+(1-\alpha-\beta)=0 \\
\Rightarrow \quad \lambda_{1}=1, \lambda_{2}=(1-\alpha-\beta) \\
\text { roots are distinct provided } \alpha+\beta \neq 0 \\
P x=\lambda x \quad P x=x \quad \text { for } \lambda_{1}=1 \quad x=\underline{1}=\binom{1}{1}
\end{gathered}
$$

$$
P \underline{1}=\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)\binom{1}{1}=\binom{1}{1} ; \quad \begin{gathered}
\text { i.e. } \underline{1} \text { is the eigenvector } \\
\text { as expected. }
\end{gathered}
$$

To obtain the right eigenvector corresponding to $\lambda_{2}=(1-\alpha-\beta)$

$$
\begin{aligned}
P\binom{x_{1}}{x_{2}} & =\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)\binom{x_{1}}{x_{2}} \\
& =\binom{(1-\alpha) x_{1}+\alpha x_{2}}{\beta x_{1}+(1-\beta) x_{2}}=(1-\alpha-\beta)\binom{x_{1}}{x_{2}} \\
(1-\alpha) x_{1}+\alpha x_{2} & =(1-\alpha-\beta) x_{1} \Rightarrow \quad \beta x_{1}=-\alpha x_{2} \\
\beta x_{1}+(1-\beta) x_{2} & =(1-\alpha-\beta) x_{2}
\end{aligned}
$$

Set $x_{1}=\alpha$, then $x_{2}=-\beta$

Define y as a (left) eigenvector of P.
Since $P=\left(\begin{array}{cc}1-\alpha & \alpha \\ \beta & 1-\beta\end{array}\right)$
If $y^{\prime}=\left(y_{1}, y_{2}\right)$ we have $y^{\prime} P=y^{\prime}$ (left eigenvector associated with $\lambda=1$)

$$
\begin{gathered}
\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right)\left(\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right)=\left(\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right) \\
{\left[\begin{array}{ll}
y_{1}(1-\alpha)+y_{2} \beta & y_{1} \alpha+y_{2}(1-\beta)
\end{array}\right]=\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]} \\
y_{1}(1-\alpha)+y_{2} \beta=y_{1} \Rightarrow y_{1}=y_{2} \frac{\beta}{\alpha}, \\
y_{1} \alpha+y_{2}(1-\beta)=y_{2}
\end{gathered} \quad \begin{aligned}
& \text { Set } y_{2}=\alpha \Rightarrow y_{1}=\beta
\end{aligned}
$$

$$
E=x y^{\prime}=\binom{1}{1}\left(\begin{array}{ll}
\beta & \alpha
\end{array}\right)=\left(\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right)
$$

However since these are the limiting probabilities, the row sums must add to unity. We shall scale the eigenvector by $(\alpha+\beta)^{-1}$; i.e.
$\Rightarrow \quad E=\frac{1}{\alpha+\beta}\left[\begin{array}{ll}\beta & \alpha \\ \beta & \alpha\end{array}\right]$
Check: $\quad E^{2}=\frac{1}{(\alpha+\beta)^{2}}\left[\begin{array}{ll}\beta^{2}+\alpha \beta & \beta \alpha+\alpha^{2} \\ \beta^{2}+\alpha \beta & \beta \alpha+\alpha^{2}\end{array}\right]=\frac{1}{\alpha+\beta}\left[\begin{array}{ll}\beta & \alpha \\ \beta & \alpha\end{array}\right]=E$

To obtain the left eigenvector corresponding to $\lambda=(1-\alpha-\beta)$ we have

$$
y^{\prime} P=(1-\alpha-\beta) y^{\prime}
$$

which can be written with $y^{\prime}=\left(\begin{array}{ll}y_{1} & y_{2}\end{array}\right)$

$$
y^{\prime} P=\left[y_{1}(1-\alpha)+\beta y_{2} \quad y_{1} \alpha+y_{2}(1-\beta)\right]=(1-\alpha-\beta)\left[\begin{array}{ll}
y_{1} & y_{2}
\end{array}\right]
$$

On solving $y_{1} \alpha=-\alpha y_{2}$ or $y_{1}=-y_{2}$. We can take $y_{1}=1, y_{2}=-1$. However it is necessary to divide by the scale factor $(\alpha+\beta)$. Therefore corresponding to $\lambda=(1-\alpha-\beta) \quad$ we have

$$
E_{2}=x y^{\prime}=(\alpha+\beta)^{-1}\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]\left[\begin{array}{cc}
1 & -1
\end{array}\right]=(\alpha+\beta)^{-1}\left[\begin{array}{cc}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right]
$$

We now can write
$P=\lambda_{1} E_{1}+\lambda_{2} E_{2}=(\lambda+\beta)^{-1}\left\{\left[\begin{array}{ll}\beta & \alpha \\ \beta & \alpha\end{array}\right]+(1-\alpha-\beta)\left[\begin{array}{cc}\alpha & -\alpha \\ -\beta & \beta\end{array}\right]\right\}$
and for P^{n} we have

$$
\begin{gathered}
P^{n}=\frac{1}{\alpha+\beta}\left[\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right]+\frac{(1-\alpha-\beta)^{n}}{\alpha+\beta}\left[\begin{array}{cc}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right] \\
P^{(\infty)}=\frac{1}{\alpha+\beta}\left[\begin{array}{cc}
\beta & \alpha \\
\beta & \alpha
\end{array}\right]
\end{gathered}
$$

$P^{(\infty)}$ are equilibrium values
Note: To obtain $P^{(\infty)}$ directly it is only necessary to find the left and right eigenvectors associated with $\lambda=1$.
8.4 Existence of $P^{(\infty)}$

Theorem If $P^{(\infty)}$ exists it will always equal

$$
P^{*}(\infty)=\lim _{n \rightarrow \infty} \frac{I+P+\ldots+P^{n}}{n+1}
$$

Proof: Suppose $P^{(\infty)}$ exists; i.e. $\quad P^{(\infty)}=E_{1}$ and P has only a single eigenvalue $=1$.

$$
P^{*}(n)=\frac{I+P+\ldots+P^{n}}{n+1}=\sum_{r=0}^{n} \frac{P^{r}}{n+1}
$$

Suppose $P(m \times m)$.

$$
\begin{aligned}
& P^{r}=\sum_{i=1}^{m} \lambda_{i}^{r} E_{i}=E_{1}+\sum_{i=2}^{m} \lambda_{i}^{r} E_{i} \lambda_{i}<1, r \neq 0 \\
& P^{*}(n)=\frac{1}{n+1}\left\{I+\sum_{r=1}^{n}\left[E_{1}+\sum_{i=2}^{m} \lambda_{i}^{r} E_{i}\right]\right\} \\
&=\frac{1}{n+1}\left\{I+n E_{1}+\sum_{i=2}^{m} E_{i} \sum_{r=1}^{n} \lambda_{i}^{r}\right\} \\
&=\frac{1}{n+1}\left\{I+n E_{1}+\sum_{i=2}^{m} \frac{\lambda_{i}\left(1-\lambda_{i}^{n}\right)}{1-\lambda_{i}} E_{i}\right\} \\
& \text { as } n \rightarrow \infty, \quad P^{*}(\infty)=E_{1} \\
& \Rightarrow P^{*}(\infty)=E_{1}=P^{(\infty)}
\end{aligned}
$$

8.5 Classification of States

Definition: A state j is accessible from state i if for some
$n>0, \quad p_{i j}^{(n)}>0$. We shall use the notation $i \rightarrow j$ to denote j is accessible from i.

Definition: If $i \rightarrow j$ and $j \rightarrow i$ the two states communicate; i.e. $p_{i j}^{(n)}>0, p_{j i}^{(n \prime)}>0$ for some n, n^{\prime}.

Definition: A set $C \subset S$ is a communicating class if
(i) $i \in C, j \in C \Rightarrow i \leftrightarrow j$
(ii) $\quad i \in C, \quad i \leftrightarrow j \Rightarrow j \in C$

Definition: A communicating class C is closed if $i \in C$ and $j \notin C \Rightarrow$ implies j is not accessible.

Def.: A Markov Chain is said to be irreducible if all states belong to a single closed communicating class. Otherwise it is called reducible.

Ex.

$\mathrm{C}=\{1,2\}$ is a closed communicating class.

Ex.

$\mathrm{C}=\{1\}$ is a closed communicating class
$\mathrm{C}=\{2\}$ is a communicating class which is not closed.

Note: All states communicate in an irreducible Markov Chain.
If P is reducible then by relabeling states we can can write

$$
P=\left(\begin{array}{ll}
A & O \\
B & C
\end{array}\right)
$$

Note that transitions from A to other states cannot happen.

Ex.

$C_{1}=\{1,6\}, C_{2}=\{2,5\}, C_{3}=\{4\}$ are closed communicating classes.
$T=\{3\}$ is a communicating class which is not closed.

Ex. Random Walk with absorbing boundaries $S=\{0,1, \ldots, N\}$

$$
\begin{aligned}
& p_{00}=p_{N N}=1, \quad p_{i, i+1}=p, \quad p_{i, i-1}=q, \quad p+q=1
\end{aligned}
$$

$$
\begin{gathered}
C_{1}=\{0\} \text { and } C_{2}=\{N\} \text { are closed communicating classes } \\
T=\{1,2, \ldots, N-1\} \text { non-closed communicating class }
\end{gathered}
$$

Def. A state i is periodic with period d if d is the largest integer d such that $p_{i i}^{(n)}>0$ where $n=$ integer multiple of d.

Def. A state i is aperiodic if $d=1$.
Def. (Alternate): $T_{i}=\min \left\{n>0: X_{n}=i\right\}$
A state i is aperiodic with period d, if $d=$ largest integer such that

$$
P\left\{T_{i}=n \mid X_{0}=i\right\}>0 \Rightarrow n \text { is an integer multiple of } d
$$

$\underline{\text { Ex. }} P=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
If $X_{0}=1$, can only visit state 1 at times $2,4,6, \ldots$ Hence $d=2$.
Since $1 \longleftrightarrow 2$, then state 2 is also periodic with $d=2$.

8.6 Terminology Summary

Def. Accessible

State j is accessible from state C for some $n \geq 0, p_{i j}^{(n)}>0 \quad(i \rightarrow j)$

Def. Communicate

States i and j communicate if each is accessible from the other $(i \leftrightarrow j)$

Def. Communicating Class

A set C is said to be a communicating class if
(i) $i \in C, j \in C \Rightarrow i \leftrightarrow j$
(ii) $\quad i \in C, i \leftrightarrow j \Rightarrow j \in C$

Def. Closed Communicating Class

A communicating class is closed if $i \in C$ and $j \notin C$ implies j is not accessible from i.

Def. Irreducible

A Markov Chain is irreducible if all states belong to a single closed communicating class; i.e. all states in an irreducible chain communicate with each other.

Def. Reducible

A chain is reducible if by relabeling states, P can be written

$$
P=\left(\begin{array}{ll}
A & O \\
B & C
\end{array}\right)
$$

Def. Periodicity

A state is periodic with period d if d is largest integer such that

$$
p_{i i}^{(n)}>0 \Rightarrow n \text { is integer multiple of } d
$$

Def. Aperiodicity
A state i is aperiodic if $d=1$.

Def. A state i is recurrent if starting initially from $i\left(X_{0}=i\right)$ it returns to i with probability one ($f_{i}=1$).

Def. Transient
A state i is transient if $f_{i}<1$.

Def. Positive and Null Recurrent

If $m_{i}=$ mean time to return to state $i\left(X_{0}=i\right)$, then state i is positive recurrent if $m_{i}<\infty$ null recurrent if $m_{i}=\infty$

Def. Ergodicity
A state i is ergodic if it is aperiodic and positive recurrent.

Def. Absorbing State
A state i is absorbing if once entered cannot leave; i.e. closed set consisting of a single state.

