9. Recurrent and Transient States

9.1 Definitions
9.2 Relations between f_{i} and $p_{i i}^{(n)}$
9.3 Limiting Theorems for Generating Functions
9.4 Applications to Markov Chains
9.5 Relations Between $f_{i j}$ and $p_{i j}^{(n)}$
9.6 Periodic Processes
9.7 Closed Sets
9.8 Decomposition Theorem
9.9 Remarks on Finite Chains
9.10 Perron-Frobenius Theorem
9.11 Determining Recurrence and Transience when Number of

States is Infinite
9.12 Revisiting Statistical Equilibrium
9.13 Appendix. Limit Theorems for Generating Functions

9.1 Definitions

Define $\quad f_{i i}^{(n)}=P\left\{X_{n}=i, X_{1} \neq i, \ldots, X_{n-1} \neq i \mid X_{0}=i\right\}$
$=$ Probability of first recurrence to i is at the $n^{t h}$ step.

$$
f_{i}=f_{i i}=\sum_{n=1}^{\infty} f_{i i}^{(n)}=\text { Prob. of recurrence to } i
$$

Def. A state i is recurrent if $f_{i}=1$.
Def. A state i is transient if $f_{i}<1$.
Define $T_{i}=$ Time for first visit to i given $X_{0}=1$. This is the same as Time to first visit to i given $X_{k}=i$. (Time homogeneous)

$$
m_{i}=E\left(T_{i} \mid X_{0}=i\right)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\text { mean time for recurrence }
$$

Note: $f_{i i}^{(n)}=P\left\{T_{i}=n \mid X_{0}=i\right\}$

Similarly we can define

$$
f_{i j}^{(n)}=P\left\{X_{n}=j, X_{1} \neq j, \ldots, X_{n-1} \neq j \mid X_{0}=i\right\}
$$

$=$ Prob. of reaching state j for first time in n steps starting from $X_{0}=i$. $f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)}=$ Prob. of ever reaching j starting from i.
Consider $f_{i i}=f_{i}=$ prob. of ever returning to i.
If $f_{i}<1,1-f_{i}=$ prob. of never returning to i.
i.e.

$$
\begin{aligned}
& 1-f_{i}=P\left\{T_{i}=\infty \mid X_{0}=i\right\} \\
& f_{i}=P\left\{T_{i}<\infty \mid X_{0}=i\right\}
\end{aligned}
$$

TH. If N is no. of visits to $i \mid X_{0}=i \Rightarrow E\left(N \mid X_{0}=i\right)=1 /\left(1-f_{i}\right)$
Proof: $\quad E\left(N \mid X_{0}=i\right)=E\left[N \mid T_{i}=\infty, X_{0}=i\right] P\left\{T_{i}=\infty \mid X_{0}=i\right\}$ $+E\left[N \mid T_{i}<\infty, X_{0}=i\right] P\left\{T_{i}<\infty \mid X_{0}=i\right\}$

$$
E\left(N \mid X_{o}=i\right)=1 \cdot\left(1-f_{i}\right)+f_{i}\left[1+E\left(N \mid X_{0}=i\right)\right]
$$

If $T_{i}=\infty \Rightarrow$ except for $n=0\left(X_{0}=i\right)$, there will never be a visit to i i.e. $E\left(N \mid T_{i}=\infty, X_{0}=i\right)=1$. If $T_{i}<\infty$, there is sure to be one visit, say at $X_{k}\left(X_{k}=i\right)$. But then $E\left(N \mid T_{i}<\infty, X_{k}=i\right)=E\left(N \mid T_{i}<\infty, X_{0}=i\right)$ by Markov property; i.e.

$$
E\left[N \mid T_{i}<\infty, X_{0}=i\right]=1+E\left[N \mid X_{0}=i\right]
$$

$$
\therefore E\left[N \mid X_{0}=i\right]=1 \cdot\left(1-f_{i}\right)+\left\{1+E\left[N \mid X_{0}=i\right]\right\} \cdot\left(f_{i}\right)
$$

$$
\Rightarrow E\left[N \mid X_{0}=i\right]=1 /\left(1-f_{i}\right)
$$

Another expression for $E\left[N \mid X_{0}=i\right]=\sum_{n=0}^{\infty} p_{i i}^{(n)}$

Relation to Geometric Distribution

Suppose i is transient $\left(f_{i}<1\right)$ and $N_{i}=$ no. of visits to i.

$$
\begin{aligned}
P\left\{N_{i}=k+1 \mid X_{0}=i\right\} & =f_{i}^{k}\left(1-f_{i}\right), \quad k=0,1, \ldots \\
E\left(N_{i} \mid X_{0}=i\right) & =\sum_{k=0}^{\infty}(k+1) f_{i}^{k}\left(1-f_{i}\right)=\sum_{k=0}^{\infty} k f_{i}^{k}\left(1-f_{i}\right)+1
\end{aligned}
$$

Since

$$
\begin{aligned}
\left(1-f_{i}\right)^{-1} & =\sum_{k=0}^{\infty} f_{i}^{k} \\
\left(1-f_{i}\right)^{-2} & =\frac{d}{d f_{i}}\left(1-f_{i}\right)^{-1}=\sum_{k=0}^{\infty} k f_{i}^{k-1} \\
E\left(N_{i} \mid X_{o}=i\right) & =f_{i}\left(1-f_{i}\right)\left(1-f_{i}\right)^{-2}+1 \\
& =f_{i}\left(1-f_{i}\right)^{-1}+1=1 /\left(1-f_{i}\right)
\end{aligned}
$$

TH. $E\left[N \mid X_{0}=i\right]=\sum_{n=0}^{\infty} p_{i i}^{(n)}$

Proof. Let $Y_{n}= \begin{cases}1 & \text { if } X_{n}=i \\ 0 & \text { otherwise }\end{cases}$

$$
N=\sum_{n=0}^{\infty} Y_{n}
$$

Since $P\left\{Y_{n}=1 \mid X_{0}=i\right\}=P\left\{X_{n}=i \mid X_{0}=i\right\}=p_{i i}^{(n)}$

$$
E(N)=\sum_{n=0}^{\infty} E\left(Y_{n}\right)=\sum_{n=0}^{\infty} p_{i i}^{(n)}
$$

$E(N)$ may be finite or infinite

Def: A positive recurrent state is defined by $f_{i}=1, m_{i}<\infty$.
A null recurrent state is defined by $f_{i}=1, m_{i}=\infty$

$$
\begin{aligned}
\underline{\text { Ex: }} f_{i i}^{(n)}=\frac{1}{n(n+1)} & =\frac{1}{n}-\frac{1}{n+1} \\
f_{i} & =\sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+1}\right)=1
\end{aligned}
$$

But $m_{i}=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=\sum_{1}^{\infty} \frac{n}{(n+1) n}=\sum_{n=1}^{\infty} \frac{1}{n+1}=\infty$ as series does not converge.

Classification of States

	f_{i}	m_{i}
Positive recurrent state	1	$<\infty$
Null recurrent state	1	∞
Transient	<1	$<\infty$

where $m_{i}=$ Expected no. of visits to i given $X_{0}=i$.
In addition the recurring and transient states may be characterized by being periodic or aperiodic.

A state is ergodic if it is aperiodic and positive recurrent.
9.2 Relations Between f_{i} and $p_{i i}^{(n)}$

Consider $p_{i i}^{(n)}$. Starting from $X_{0}=i$, the first recurrence to i may be at $k=1,2, \ldots, n$. Consider the first visit is at time k and at $X_{n}, X_{n}=i$ another visit is made. This probability is $f_{i i}^{(k)} p_{i i}^{(n-k)}$. Summing over all k results in

$$
\begin{equation*}
p_{i i}^{(n)}=\sum_{k=1}^{n} f_{i i}^{(k)} p_{i i}^{(n-k)} \tag{*}
\end{equation*}
$$

where $p_{i i}^{(o)}=1=P\left\{X_{0}=i \mid X_{0}=i\right\}$
Multiplying ($*$) by s^{n} and summing

$$
\sum_{n=1}^{\infty} p_{i i}^{(n)} s^{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{i i}^{(k)} p_{i i}^{(n-k)} s^{n}=\sum_{k=1}^{\infty} f_{i i}^{(k)} s^{k} \sum_{n=k}^{\infty} p_{i i}^{(n-k)} s^{n-k}
$$

$$
\sum_{n=1}^{\infty} p_{i i}^{(n)} s^{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{i i}^{(k)} p_{i i}^{(n-k)} s^{n}=\sum_{k=1}^{\infty} f_{i i}^{(k)} s^{k} \sum_{n=k}^{\infty} p_{i i}^{(n-k)} s^{n-k}
$$

$$
P_{i i}(s)-1=F_{i i}(s) P_{i i}(s)
$$

where $\quad P_{i i}(s)=\sum_{n=0}^{\infty} p_{i i}^{(n)} s^{n}, \quad F_{i i}(s)=\sum_{n=1}^{\infty} f_{i i}^{(n)} s^{n}$

$$
P_{i i}(s)=\frac{1}{1-F_{i i}(s)}
$$

Note:

$$
\begin{gathered}
\lim _{s \rightarrow 1} F_{i i}(s)=F_{i i}(1)=\sum_{n=1}^{\infty} f_{i i}^{(n)}=f_{i} \\
\lim _{s \rightarrow 1} F_{i i}^{\prime}(s)=F_{i i}^{\prime}(1)=\sum_{n=1}^{\infty} n f_{i i}^{(n)}=m_{i}
\end{gathered}
$$

Theorems

(a) If $P_{i i}(1)=\sum_{0}^{\infty} p_{i i}^{(n)}=\infty \Rightarrow f_{i}=1$.

Conversely if $f_{i}=1, \quad P_{i i}(1)=\infty$
(b) If $P_{i i}(1)=\sum_{0}^{\infty} p_{i i}^{(n)}<\infty \Rightarrow f_{i}<1$.

Conversely if $f_{i}<1, \quad P_{i i}(1)<\infty$

9.3 Limiting Theorems for Generating Functions

Consider $A(s)=\sum_{n=0}^{\infty} a_{n} s^{n}, \quad|s| \leq 1$ with $a_{n} \geq 0$.

$$
\text { 1. } \lim _{n \rightarrow \infty} \sum_{k=0}^{n} a_{k}=\lim _{s \rightarrow 1} A(s) \text { where } s \rightarrow 1 \text { means } s \rightarrow 1-\text {. }
$$

2. Define

$$
\begin{gathered}
a^{*}(n)=\sum_{k=0}^{n} a_{k} /(n+1) \\
\lim _{n \rightarrow \infty} a^{*}(n)=\lim _{s \rightarrow 1}(1-s) A(s)
\end{gathered}
$$

3. Cesaro Limit

The Cesaro limit is defined by $\lim _{n \rightarrow \infty} a^{*}(n)$ If the sequence $\left\{a_{n}\right\}$ has a limit $\Pi=\lim _{n \rightarrow \infty} a_{n}$ then $\lim _{n \rightarrow \infty} a^{*}(n)=\Pi$.
The Cesaro limit may exist without the existence of the ordinary limit.

Ex. $a_{n}: 0,1,0,1,0,1, \ldots$
$\lim _{n \rightarrow \infty} a_{n}$ does not exist.

However

$$
\begin{gathered}
a^{*}(n)= \begin{cases}\frac{1}{2} & \text { if } n \text { even } \\
\frac{1}{2}\left(1-\frac{1}{n}\right) & \text { if } n \text { is odd }\end{cases} \\
\lim _{n \rightarrow \infty} a^{*}(n)=\frac{1}{2}
\end{gathered}
$$

9.4 Application to Markov Chains

Consider $p_{i i}^{*}(n)=\sum_{k=0}^{n} \frac{p_{i i}^{(k)}}{n+1}$
$\sum_{k=0}^{n} p_{i i}^{(k)}$ is expected no. of visits to i starting from $X_{0}=i\left(p_{i i}^{0}=1\right)$.
Dividing by $(n+1), p_{i i}^{*}(n)$ is expected no. of visits per unit time.

Ex. $n=29$ days, $\quad p_{i i}^{*}(29)=2 / 30$; i.e. 2 visits per 30 days or 1 visit per 15 days. One would expect mean time between visits $=15$ days.

TH. $\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \frac{p_{i i}^{(k)}}{n+1}=\frac{1}{m_{i}}$, where $m_{i}=$ expected no. of visits and $f_{i}=1$
Proof: Consider $P_{i i}(s)=\frac{1}{1-F_{i i}(s)}$

$$
\lim _{s \rightarrow 1}(1-s) P_{i i}(s)=\lim _{n \rightarrow \infty} p_{i i}^{*}(n)=\lim _{s \rightarrow 1} \frac{(1-s)}{1-F_{i i}(s)}
$$

Since $F_{i i}(1)=f_{i}$, if $f_{i}=1$, the r.h.s. is indeterminate. Using L'Hopital's rule

$$
\lim _{n \rightarrow \infty} p_{i i}^{*}(n)=\frac{1}{F_{i i}^{\prime}(1)}=\frac{1}{m_{i}}
$$

Recall a positive recurrent state has $m_{i}<\infty \Rightarrow \lim _{n \rightarrow \infty} p_{i i}^{*}(n)>0$
A null recurrent state has $m_{i}=\infty$
$\Rightarrow \quad \lim _{n \rightarrow \infty} p_{i i}^{*}(n)=0 \quad$ or $\quad \lim _{n \rightarrow \infty} p_{i i}^{(n)}=0$
9.5 Relations Between $f_{i j}$ and $p_{i j}^{(n)}(i \neq j)$

$$
f_{i j}^{(n)}=P\left\{X_{n}=j, X_{r} \neq j, r=1,2, \ldots, n-1 \mid X_{0}=i\right\}
$$

$=$ Prob. of starting from i and reaching j for first time at $n^{t h}$ step.

$$
f_{i j}=\sum_{n=1}^{\infty} f_{i j}^{(n)} \quad i \neq j
$$

Proceeding as before $(i \neq j)$

$$
\begin{aligned}
p_{i j}^{(n)} & =f_{i j}^{(1)} p_{j j}^{(n-1)}+f_{i j}^{(2)} p_{j j}^{(n-1)}+\ldots+f_{i j}^{(n)} \\
& =\sum_{k=1}^{n} f_{i j}^{(k)} p_{j j}^{(n-k)} \quad\left(p_{j j}^{(0)}=1\right)
\end{aligned}
$$

Multiplying by s^{n} and summing over n

$$
\sum_{n=1}^{\infty} p_{i j}^{(n)} s^{n}=\sum_{n=1}^{\infty} \sum_{k=1}^{n} f_{i j}^{(k)} p_{j j}^{(n-k)} s^{n}
$$

$$
\begin{gathered}
P_{i j}(s)=\sum_{k=1}^{\infty} f_{i j}^{(k)} s^{k} \sum_{n=k}^{\infty} p_{j j}^{(n-k)} s^{n-k} \\
P_{i j}(s)=F_{i j}(s) P_{j j}(s) \quad i \neq j \\
\lim _{s \rightarrow 1}(1-s) P_{j j}(s)=\lim _{n \rightarrow \infty} p_{j j}^{*}(n)=\lim _{s \rightarrow 1}(1-s) P_{i j}(s) / F_{i j}(1) \\
\lim _{n \rightarrow \infty} p_{j j}^{*}(n)=\lim _{n \rightarrow \infty} \frac{p_{i j}^{*}(n)}{F_{i j}(1)}=\frac{1}{m_{i}} \text { or } \lim _{n \rightarrow \infty} p_{i j}^{*}(n)=\frac{F_{i j}(1)}{m_{i}}
\end{gathered}
$$

Also $P_{i j}(1)=\sum_{n=1}^{\infty} p_{i j}^{(n)}=F_{i j}(1) \sum_{n=0}^{\infty} p_{j j}^{(n)}$.
Hence if $\quad \sum_{n=0}^{\infty} p_{j j}^{(n)}=\infty \Rightarrow \sum_{n=0}^{\infty} p_{i j}^{(n)}=\infty \quad\left(p_{i j}^{(0)}=0\right)$.
Similarly if $\sum_{n=0}^{\infty} p_{j j}^{(n)}<\infty \Rightarrow \sum_{n=0}^{\infty} p_{i j}^{(n)}<\infty$

Summary

$\underline{\text { Transient }} \quad \sum_{n=0}^{\infty} p_{i i}^{(n)}<\infty, \quad f_{i}<1, \quad m_{i}=1 /\left(1-f_{i}\right)$

$$
\lim _{n \rightarrow \infty} p_{i i}^{(n)}=0, \quad \sum_{n=1}^{\infty} p_{i j}^{(n)}<\infty, \quad \lim _{n \rightarrow \infty} p_{i j}^{(n)}=0
$$

$\underline{\text { Positive Recurrent }}$

$$
\begin{gathered}
\sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty, \quad f_{i}=1, \quad m_{i}<\infty \\
\lim _{n \rightarrow \infty} p_{i i}^{*}(n)>0 \quad\left(=1 / m_{i}\right) \\
\lim _{n \rightarrow \infty} p_{i j}^{*}(n)>0 \quad\left(=F_{i j}(1) / m_{i}\right)
\end{gathered}
$$

Negative Recurrent

$$
\begin{aligned}
& \sum_{n=0}^{\infty} p_{i i}^{(n)}=\infty, f_{i}=1, \quad m_{i}=\infty \\
& \lim _{n \rightarrow \infty} p_{i i}^{*}(n)=0, \quad \lim _{n \rightarrow \infty} p_{i i}^{(n)}=0
\end{aligned}
$$

9.6 Periodic Processes

Suppose transition probabilities have period d.
Then

$$
\begin{gathered}
p_{i j}^{(n)}=0, \quad p_{i i}^{(n)}=0 \text { if } n \neq r d r=1,2, \ldots \\
p_{i j}^{(n)} \geq 0, \quad p_{i i}^{(n)} \geq 0 \text { if } n=r d \\
P_{i i}(s)=\sum_{r=0}^{\infty} p_{i i}^{(r d)} s^{r d}=\sum_{r=0}^{\infty} p_{i i}^{(r d)} z^{r}, \quad z=s^{d} \\
F_{i i}(s)=\sum_{r=1}^{\infty} f_{i i}^{(r d)} s^{r d}=\sum_{r=1}^{\infty} f_{i i}^{(r d)} z^{r}
\end{gathered}
$$

We now have a power series in z

$$
\begin{aligned}
\lim _{z \rightarrow 1} P_{i i}(Z) & =\sum_{r=0}^{\infty} p_{i i}^{(r d)} \\
\lim _{z \rightarrow 1}(1-z) P_{i i}(z) & =\sum_{n \rightarrow \infty} \sum_{r=0}^{n} \frac{p_{i i}^{(r d)}}{n+1} \\
\text { Note: } E\left(N \mid X_{0}=i\right) & =\sum_{1}^{\infty} n f_{i i}^{(n)}=d \sum_{r=1}^{\infty} r f_{i i}^{(r d)}=m_{i}
\end{aligned}
$$

However $F_{i i}^{\prime}(1)=\sum_{r=1}^{\infty} f_{i i}^{(r d)} r=m_{i} / d$
Since $P_{i i}(Z)=1 /\left[1-F_{i i}(z)\right]$

$$
\lim _{n \rightarrow \infty} p_{i i}^{*}(n)=d / m_{i} \text { or } \lim _{n \rightarrow \infty} p_{i i}^{(n d)}=d / m_{i}
$$

9.7 Closed Sets

Def. A set of states C is closed if no state outside C can be reached from any state in C; i.e., $p_{i j}=0$ if $i \in C$ and $j \notin C$.

Absorbing state: Closed set consisting of a single state.
Irreducible Chain: If only closed set is the set of all states. (Every state can be reached from any other state).

This means that we can study the behavior of states in C by omitting all other states.

Th. $i \leftrightarrow j, \quad i$ is recurrent $\Rightarrow j$ recurrent
$i \leftrightarrow j, \quad i$ is transient $\Rightarrow j$ transient

$$
\begin{aligned}
\sum_{r=0}^{\infty} p_{j j}^{(r)} & \geq \sum_{r=0}^{\infty} p_{j j}^{(r+n+m)}=\sum_{r=0}^{\infty} \sum_{k \in S} p_{j k}^{(m)} p_{k k}^{(r)} p_{k j}^{(n)} \\
& \geq \sum_{r=0}^{\infty} p_{j i}^{(m)} p_{i i}^{(n)} p_{i j}^{(n)}=p_{j i}^{(m)} p_{i j}^{(n)} \sum_{r=0}^{\infty} p_{i i}^{(r)}
\end{aligned}
$$

Thus if $\sum_{r=0}^{\infty} p_{i i}^{(r)}=\infty, \quad \sum_{r=0}^{\infty} p_{j j}^{(r)}=\infty$
Suppose i is transient, $i \leftrightarrow j$ and assume j is recurrent. By theorem just proved \underline{i} then must be recurrent. However this is a contradiction $\Rightarrow \underline{j}$ is transient.

Summary (Aperiodic, irreducible)

1. If $i \leftrightarrow j$ and j is positive recurrent $\Rightarrow i$ is positive recurrent

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} p_{j j}^{(n)}=\Pi_{j}=1 / m_{j}
$$

2. If $i \leftrightarrow j$ and j is null recurrent $\Rightarrow i$ is null recurrent

$$
\begin{gathered}
\lim _{n \rightarrow \infty} p_{j j}^{(n)}=0, \quad \lim _{n \rightarrow \infty} p_{i j}^{(n)}=0 \\
\text { or } P^{(\infty)}=\lim _{n \rightarrow \infty} P^{(n)}=\lim _{n \rightarrow \infty} P^{n}=0
\end{gathered}
$$

3. If $i \leftrightarrow j$ and j is transient $\Rightarrow i$ is transient

$$
\lim _{n \rightarrow \infty} p_{j j}^{(n)}=0, \lim _{n \rightarrow \infty} p_{i j}^{(n)}=0
$$

9.8 Decomposition Theorem
(a) The states of a Markov Chain may be divided into two sets (one of which may be empty). One set is composed of all the recurring states, the other of all the transient states.
(b) The recurrent states may be decomposed uniquely into two closed sets. Within each closed set all states inter-communicate and they are all of the same type and period. Between any two closed sets no communication is possible.

Ex. Decomposition of a Finite Chain

$$
\begin{aligned}
& C_{0} \quad C_{1} \quad C_{2} \quad C_{3} \\
& \begin{array}{llllllllllllll}
1 & 0 & \vdots & 0 & \cdots & 0 & \vdots & 0 & \cdots & 0 & \vdots & 0 & \cdots & 0
\end{array} \\
& P=\quad C_{1} \begin{array}{cccccccccccccc}
0 & 0 & \vdots & 0 & \cdots & 0 & \vdots & 0 & \cdots & 0 & \vdots & 0 & \cdots & 0 \\
\hline O & \vdots & & P_{1} & & \vdots & & O & & \vdots & & O &
\end{array} \\
& \begin{array}{cllllllll}
C_{2} & O & \vdots & O & \vdots & P_{1} & \vdots & O
\end{array} \\
& \begin{array}{llllllll}
C_{3} & A & \vdots & B & \vdots & C & \vdots & D
\end{array}
\end{aligned}
$$

C_{0} : Consists of two absorbing states
C_{1} : Consists of closed recurrent states
C_{2} : Consists of closed recurrent states
C_{3} : Consists of transient states
A: Transitions $C_{3} \rightarrow C_{0}$
B: Transitions $C_{3} \rightarrow C_{1}$
C: Transitions $C_{3} \rightarrow C_{2}$
D: Transitions $C_{3} \rightarrow C_{3}$

9.9 Remarks on Finite Chains

1. A finite chain cannot consist only of transient states. If i, j are transient $\lim _{n \rightarrow \infty} p_{i j}^{(n)}=0$,
However

$$
\sum_{j \in S} p_{i j}^{(n)}=1
$$

leading to a contradiction as $n \rightarrow \infty$.
2. A finite chain cannot have any null recurrent states.

The one step transition probabilities within a closed set of null recurrent states form a stochastic matrix P such that $P^{n} \rightarrow 0$ as $n \rightarrow \infty$. This is impossible as $\sum_{j \in S} p_{i j}^{(n)}=1$.

9.10 Perron-Frobenius Theorem

Earlier we had seen that if P has a characteristic root (eigenvalue) $=1$ of multiplicity 1 , and all other $\left|\lambda_{i}\right|<1$, then

$$
P^{(\infty)}=E_{1}
$$

The conditions under which this is true are proved by the
Perron-Frobenius Theorem. The necessary and sufficient conditions are:

$$
\begin{array}{ll}
P: & \text { aperiodic } \\
P: & \text { positive recurrent }\left(m_{i}<\infty\right)
\end{array}
$$

Then $P_{1}^{(\infty)}=P^{\infty}=E_{1}=1 y^{\prime}$
where $\quad y^{\prime} P=y^{\prime} \quad$ and $\quad \underline{1}=\left(\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right)^{\prime}$
Def. A state is ergodic if it is aperiodic and positive recurrent.

9.11 Determining Recurrence and Transience

when Number of States is Infinite

Compute $f_{i}=P\left\{T_{i}<\infty \mid X_{0}=i\right\}$ in a closed communicating class. $\Rightarrow \quad$ All states are recurrent if $f_{i}=1$; All states are transient if $f_{i}<1$.

Ex. $S=\{0,1,2, \ldots\}, \quad p_{i, 0}=q_{i} \quad p_{i, i+1}=p_{i}$,

$$
\begin{gathered}
X_{n+1}= \begin{cases}0 & \text { with } q_{i} \\
X_{n}+1 & \text { with } p_{i}\end{cases} \\
P\left\{T_{0}>n \mid X_{0}=0\right\}=P\left\{X_{1}=1, X_{2}=1, \ldots, X_{n}=n \mid X_{0}=0\right\} \\
=\prod_{i=0}^{n-1} p_{i}
\end{gathered}
$$

$$
P\left\{T_{0}<\infty \mid X_{0}=0\right\}=1-\lim _{n \rightarrow \infty} P\left\{T_{0}>n \mid x_{0}=0\right\}=1-\prod_{i=0}^{\infty} p_{i}
$$

\therefore State 0 (and all states in closed class) are recurrent iff $\prod_{i=0}^{\infty} p_{i}=0$

Ex. Random Walk on Integers

$$
\begin{aligned}
S & =\{0, \pm 1, \pm 2, \ldots\} \\
p_{i, i+1} & =p, \quad p_{i, i-1}=q, \quad p+q=1 \\
p_{00}^{(2 n+1)} & =0, \quad n \geq 0 \text { (Go from } 0 \text { to } 0 \text { in odd number of transitions) } \\
p_{00}^{(2 n)} & =\binom{2 n}{n} p^{n} q^{n}
\end{aligned}
$$

Consider

$$
\sum_{n=1}^{\infty} p_{00}^{(n)}=\sum_{n=1}^{\infty} p_{00}^{(2 n)}=\sum_{n=1}^{\infty} \frac{(2 n)!}{n!n!} p^{n} q^{n}
$$

Note: Ratio Test: If $A=\sum_{n=0}^{\infty} a_{n}$ and

$$
\begin{gathered}
\frac{a_{n+1}}{a_{n}}<1 \text { series converges as } n \rightarrow \infty \\
\frac{a_{n+1}}{a_{n}}>1 \text { series diverges as } n \rightarrow \infty \\
\frac{p_{00}^{2 n+2}}{p_{00}^{2 n}}=\frac{(2 n+1)(2 n+2)}{(n+1)(n+1)} p q \rightarrow 4 p q \text { as } n \rightarrow \infty
\end{gathered}
$$

If $p \neq q \quad 4 p q<1$.
If $p=q=1 / 2 \quad 4 p q=1$ and test is inconclusive.

$$
\begin{aligned}
\binom{2 n}{s} p^{s} q^{2 n-s} & \sim N(2 n p, 2 n p q)=N(n, n / 2) \text { if } p=1 / 2 \\
& \sim e^{-(s-n)^{2} / n} / \sqrt{2 \pi \frac{n}{2}}
\end{aligned}
$$

Since $p_{00}^{(2 n)} \sim \frac{1}{\sqrt{\pi n}}$

$$
\sum_{n=1}^{\infty} p_{00}^{(2 n)} \cong \sum_{n=1}^{\infty} \frac{1}{\sqrt{\pi n}} \quad \text { series diverges }
$$

\therefore State 0 is recurrent.
Th. An irreducible Markov Chain with $S=\{0,1,2, \ldots\}$ and Transition Prob. $\left\{p_{i j}\right\}$ is transient iff

$$
y_{i}=\sum_{j=1}^{\infty} p_{i j} y_{j} \quad i=1,2, \ldots
$$

has a non-zero bounded solution
Proof: P. 88

Ex. Random walk on $S=\{0,1,2, \ldots\}$

$$
p_{i, i+1}=p_{i}, \quad p_{i, i-1}=q_{i} \quad p_{i, i}=r_{i}, q_{0}=0\left(p_{i}+q_{i}+r_{i}=1\right)
$$

Equations:

$$
\begin{aligned}
y_{1} & =p_{11} y_{1}+p_{12} y_{2}=r_{1} y_{1}+p_{1} y_{2} \Rightarrow y_{2}=\left(1+\frac{q_{1}}{p_{1}}\right) y_{1} \\
y_{2} & =p_{21} y_{1}+p_{22} y_{2}+p_{23} y_{3}=q_{2} y_{1}+r_{2} y_{2}+p_{2} y_{3} \\
& \Rightarrow y_{3}=\left(1+\frac{q_{1}}{p_{1}}+\frac{q_{1} q_{2}}{p_{1} p_{2}}\right) y_{1}
\end{aligned}
$$

In general,

$$
\begin{aligned}
& y_{n}=\left[1+\sum_{k=1}^{n-1} \frac{q_{1} q_{2} \ldots q_{k}}{p_{1} p_{2} \ldots p_{k}}\right] y_{1}, n \geq 1 \\
& y_{n}=\left(\sum_{k=0}^{n-1} \alpha_{k}\right) y_{1}, \quad \alpha_{k}=\frac{q_{1} q_{2} \ldots q_{k}}{p_{1} p_{2} \ldots p_{k}}, \alpha_{0}=1
\end{aligned}
$$

Thus the solution is bounded if $\sum_{k=0}^{\infty} \alpha_{k}<\infty$

9.12 Revisiting Statistical Equilibrium

Assume the Markov Chain has all states which are irreducible positive recurrent aperiodic. (Called Ergodic Chain).

Earlier we had shown

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} p_{j j}^{(n)}=1 / m_{j}=\Pi_{j}
$$

$\Rightarrow \quad \Pi_{j}$ is given by the solution

$$
\Pi_{j}=\sum_{i \in S} \Pi_{i} p_{i j} \quad \text { where } \sum_{j \in S} \Pi_{j}=1
$$

or in matrix notation we can write the linear equations as
$\Pi=P \Pi$ where $\Pi: k \times 1, \quad P: k \times k$.
Proof $a_{j}(n)=P\left\{X_{n}=j\right\}$ and we will show that $\lim _{n \rightarrow \infty} a_{j}(n)=\Pi_{j}$

$$
a_{j}(n+m)=\sum_{i \in S} \Pi_{i} p_{i j}^{(n)}
$$

Take $m \rightarrow \infty \quad \Pi_{j}=\sum_{i \in S} \Pi_{i} p_{i j}^{(n)} \quad$ for any n
If $n=1$

$$
\Pi_{j}=\sum_{i \in S} \Pi_{i} p_{i j}
$$

Allow $n \rightarrow \infty \quad \Pi_{j}=\left(\sum_{i \in S} \Pi_{i}\right) \Pi_{j}$
which is true if $\sum_{i \in s} \Pi_{i}=1$
In the above we made use of

$$
\lim _{n \rightarrow \infty} p_{i j}^{(n)}=\lim _{n \rightarrow \infty} p_{j j}^{(n)}=\Pi_{j}
$$

which holds for ergodic chains.
If chain was transient or null recurrent

$$
p_{i j}^{(n)}=p_{j j}^{(n)} \rightarrow 0 \text { as } n \rightarrow \infty \text { and } \Pi_{j}=\sum_{i \in S} \Pi_{i} p_{i j}^{(n)} \rightarrow 0 \text { as } n \rightarrow \infty,
$$

and result does not hold.

Th: If $a_{0}(j)=P\left\{X_{0}=j\right\}=\Pi_{j}$ then $\quad P\left\{a_{n}=j\right\}=\Pi_{j}$ for all n.
This theorem states that if the initial probabilities correspond to the limiting probabilities, then for any $n \quad p\left\{X_{n}=j\right\}=\Pi_{j}$.

Proof:

In general $a_{j}(n)=\sum_{i \in S} a_{0}(i) p_{i j}^{(n)}$ and in matrix notation we can write $a_{n}=P^{n} a_{0}$

If $a_{o}=\Pi, a_{n}=P^{n} \Pi$. But Π is defined
by $\Pi=P \Pi . \quad \Rightarrow a_{n}=P \Pi=\Pi$
This is the reason why Π is sometimes referred to as the stationary distribution.

9.13 Appendix. Limit Theorems for Generating Functions

Definition: Let $A(z)=\sum_{n=0}^{\infty} a_{z}^{n}$ denote a power series. In our application z will always be real, however all the results also hold if z is a complex number.

Theorem If $\left\{a_{n}\right\}$ are bounded, say $\left|a_{n}\right| \leq B$, then $A(z)$ converges for at least $|z|<1$.
Proof : $\quad A(z)=|A(z)| \leq\left.\sum_{n=0}^{\infty}\left|a_{n}\right| z^{n}\left|\leq B \sum_{n=0}^{\infty}\right| z\right|^{n}=B / 1-|z|$
Definition: The number R is called the radius of convergence of the power series $A(z)$ if $A(z)$ converges for $|z|>R$. Without loss of generality the radius of convergence can be taken as $R=1$. Note if R is the radius of convergence of $A(z)$ we can write $A(z)=\sum_{0}^{\infty} b_{n} y^{n}$ and the radius of convergence of y will be unity.

Properties of $A(z)$

(i) If R is the radius of convergence

$$
R^{-1}=\lim _{n \rightarrow \infty} \sup \left(a_{n}\right)^{1 / n}
$$

(ii) Within the interval of convergence $(-R<z<R), A(z)$ has derivatives of all orders which may be obtained by term-wise differentiation. Similarly the integral $\int_{a}^{b} A(z) d z$ is given by term-wise integration for any (a, b) in $(-R, R)$.
(iii) If $A(z)$ and $B(z)=\sum_{0}^{\infty} b_{n} z^{n}$ both converge and are equal for all $|z|<R$, then $a_{n}=b_{n}$.
(iv) No general statement can be made about the convergence of the series on the boundary $|z|=R$; i.e. $\sum_{n} a_{n} R^{n}$ may or may not be finite.

Two important theorems on power series are:
$\underline{\text { Abel's Theorem }}$ Suppose $A(z)$ has a radius of convergence $R=1$ and
$\sum_{0}^{\infty} a_{n}$ is convergent to s. Then

$$
\lim _{z \rightarrow 1-} A(z)=\sum_{n=0}^{\infty} a_{n}
$$

If the coefficients $\left\{a_{n}\right\}$ are non-negative, the result continues to hold whether or not the sum on the right is convergent.

Note:

$$
\begin{aligned}
A_{N}(z)=\sum_{n=0}^{N} a_{n} z^{n} & =\sum_{n=0}^{N}\left(s_{n}-s_{n-1}\right) z^{n}, \quad s_{n}=\sum_{i=0}^{n} a_{i} \\
& =\sum_{n=0}^{N} s_{n} z^{n}-z \sum_{n=0}^{N-1} s_{n} z^{n} \\
& =(1-z) \sum_{n=0}^{N} s_{n} z^{n}+s_{N} z^{N}
\end{aligned}
$$

$\lim _{z \rightarrow 1-} A_{n}(z)=s_{N}$ and taking the limit as $N \rightarrow \infty$

$$
\lim _{N \rightarrow \infty} s_{N}=s
$$

Theorem: If the sequence $\left\{b_{n}\right\}$ converges to a limit $b\left(\lim _{n \rightarrow \infty}=b\right)$, then

$$
\lim _{z \rightarrow 1-}(1-z) \sum_{n=0}^{\infty} b_{n} z^{n}=b
$$

Proof: $\quad(1-z) \sum_{n=0}^{\infty} b_{n} z^{n}=\sum_{n=0}^{\infty}\left(b_{n}-b_{n-1}\right) z^{n} \quad\left(b_{-1}=0\right)$
We can write $\left.\sum_{n=0}^{N}\left(b_{n}-b_{n-1}\right) z^{n}=(1-z) \sum_{n=0}^{N} s_{n} z^{n}+s\right) n z^{N}$
where
$s_{n}=\sum_{i=0}^{n}\left(b_{i}-b_{i-1}\right)=b_{0}+\left(b_{1}-b_{0}\right)+\left(b_{2}-b_{1}\right)+\ldots+\left(b_{n}-b_{n-1}\right)=b_{n}$
Therefore $\quad(1-z) \sum_{n=0}^{N} b_{n} a^{n}=(1-z) \sum_{n=0}^{N} s_{n} z^{n}+b_{n} z^{N}$
and $\lim _{z \rightarrow 1^{-}}(1-z) \sum_{n=0}^{N} b_{n} z^{n}=b_{n}$, so that as $N \rightarrow \infty, \lim _{N \rightarrow \infty} b_{N}=b$.

