Prevention of Hepatitis B Virus Infection the Impact and Problems

Mei-Hwei Chang ,M.D.,
Department of Pediatrics & Hepatitis Research
Center, National Taiwan University Hospital,
Taipei, TAIWAN

Hepatitis B Virus Infection

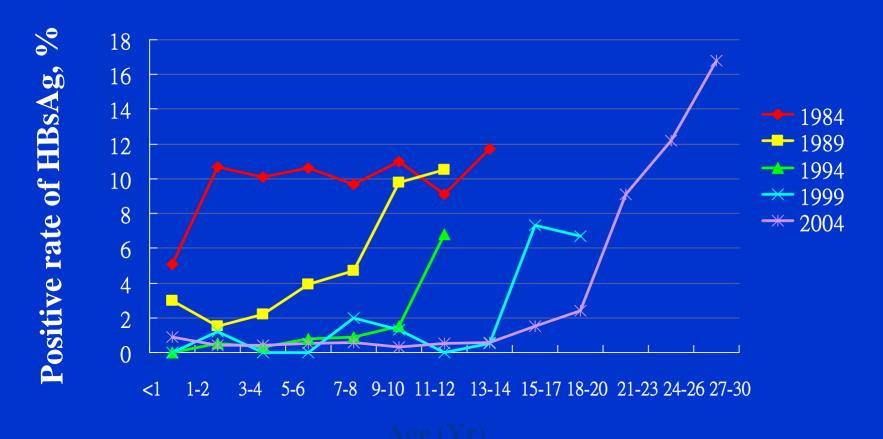
- Acute / Fulminant Hepatitis
- Chronic Hepatitis
- Liver Cirrhosis
- Hepatocellular Carcinoma

PERINATAL TRANSMISSION OF HBV FROM HBsAg POSITIVE MOTHERS

90% HBsAg
Carriers

Infants of HBeAg Negative Mothers

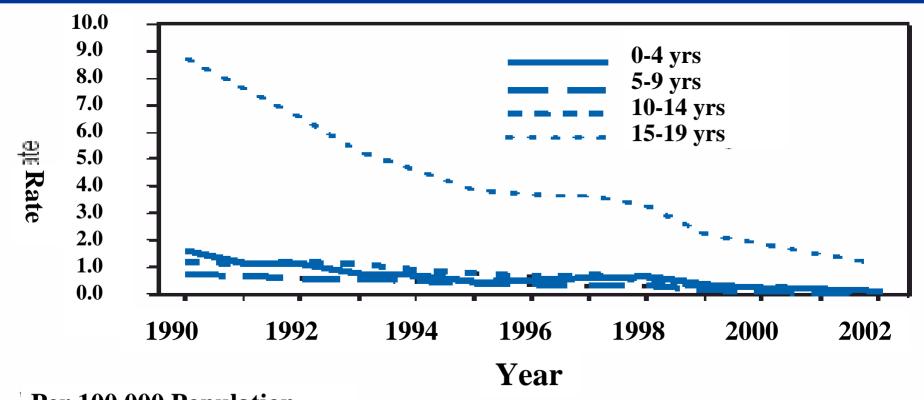
<5% HBsAg Carriers, Mostly Acute or Fulminant Hepatitis, or Uninfected


Hepatitis B Vaccination and Control of Hepatitis B Related Diseases

- Acute /Fulminant Hepatitis
- Chronic Hepatitis
- Liver Cirrhosis ?
- Hepatocellular Carcinoma

Seroprevalence of HBsAg in 1984, 1989, 1994, 1999, and 2004 in Taipei, Taiwan

Ni YH, Chang MH, et al. Gastroenterology 2007; 132:1287-93.

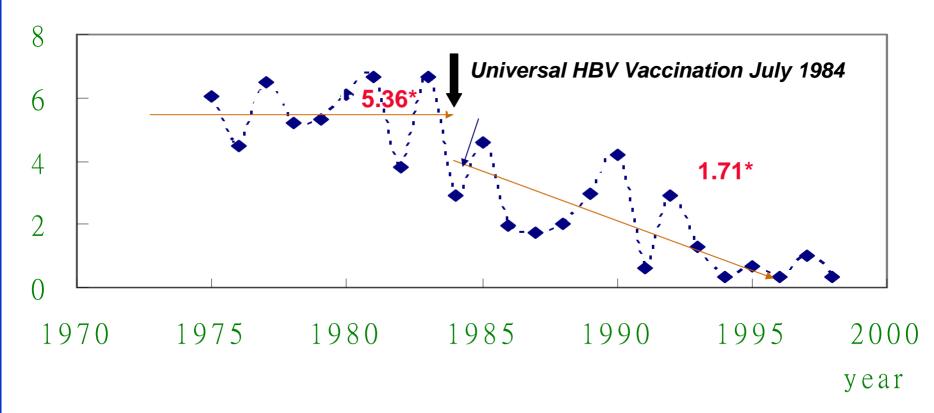

Ann Intern Med 2001;135:796-800; Chen HL, et al. JAMA 1996;

Hsu HY, et al. J Med Virol 1986

Rate of Acute Hepatitis B among Children and Adolescents, by Age Group and Year---

United States, 1990-2002

Per 100,000 Population


MMWR Weekly November 5, 2004 / 53(43);1015-1018

Acute Communicable Disease Control 2007 Annual Morbidity Report

Universal HBV Vaccination and Decreased Mortality from Fulminant Hepatitis in Infants in Taiwan

Annual mortality rate of fulminant hepatitis per 100,000 infants in Taiwan

*The average mortality rate per 10⁵ infants Mortality Ratio: 3.2 (p < 0.001)

Incidence of Hepatocellular Carcinoma in Children Diagnosed at Aged 6 to 14 Years from July 1981 to June 2004 According to Birth Year

Birth Year*	Incidence (per 10 ⁵)	R.R.	95% CI
1966-84	0.52-0.54	1	
1984-94	0.13-0.20	0.25-0.36	0.26-0.52

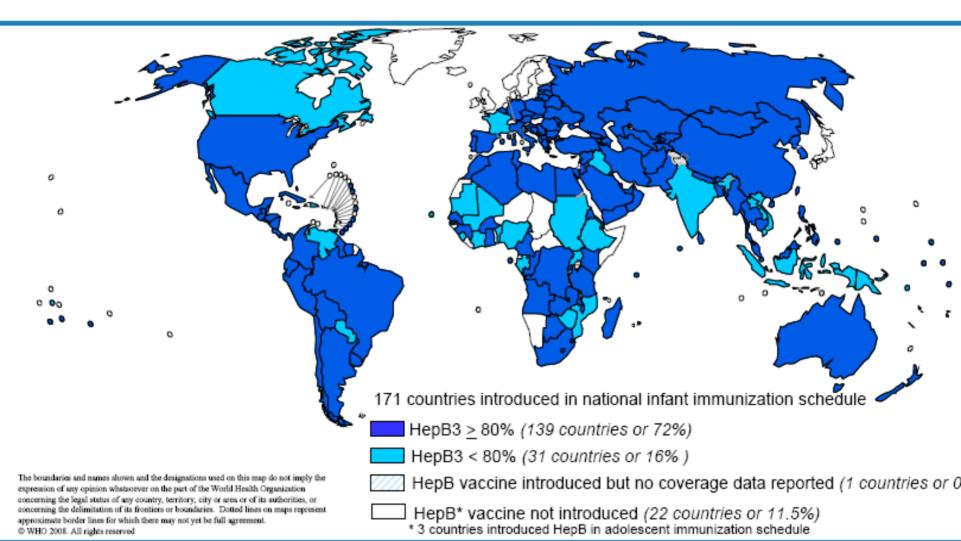
•Birth Year was counted from July of one year to June of the next year. R.R.: risk ratio; CI: confidence interval.

Chang MH, et al. N Engl Med 1997; 336: 1855-9; Clin Cancer Res 2005; 11: 7953-7.

Incidence rates of HCC diagnosed in 1983-2004 among children 6-19 years old and born before or after the launch of the Taiwanese universal HBV vaccination program in July 1984

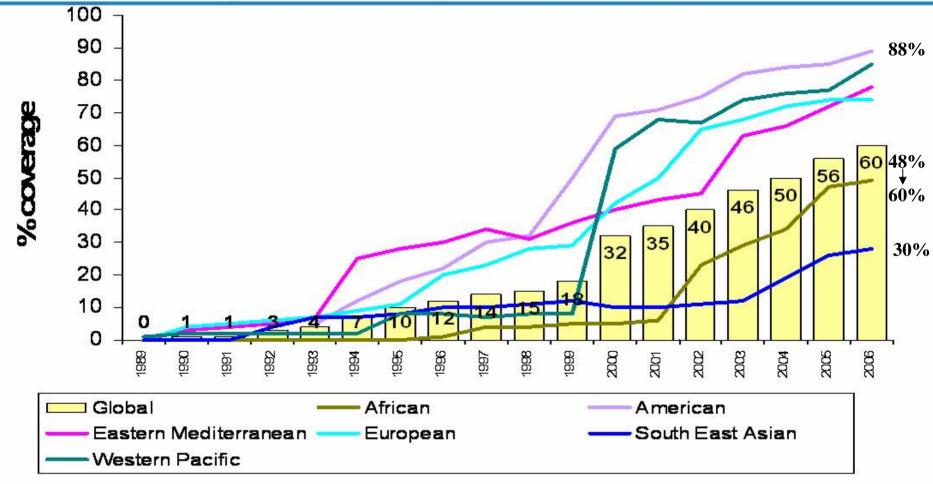
	Birth	Hepatocellular carcinoma			
Age at	year	No. of	Incidence rate (per 10 ⁵	Rate ratio	P
Dx		HCCs	person-years)		
6-9	1973-1979	36	0.51	1(referent)	
	1979-1984	38	0.47	0.93	.74
	1984-1998	26	0.15	0.30	<.001
10-14	1968-1979	102	0.60	1(referent)	
	1979-1984	50	0.50	0.84	.29
	1984-1994	28	0.19	0.32	<.001
15-19	1963-1979	138	0.52	1(referent)	
	1979-1984	80	0.80	1.55	.001
	1984-1989	10	0.16	0.30	<.001

Prenatal maternal HBsAg on risk of HCC among patients versus the vaccinated general population who were 6-19

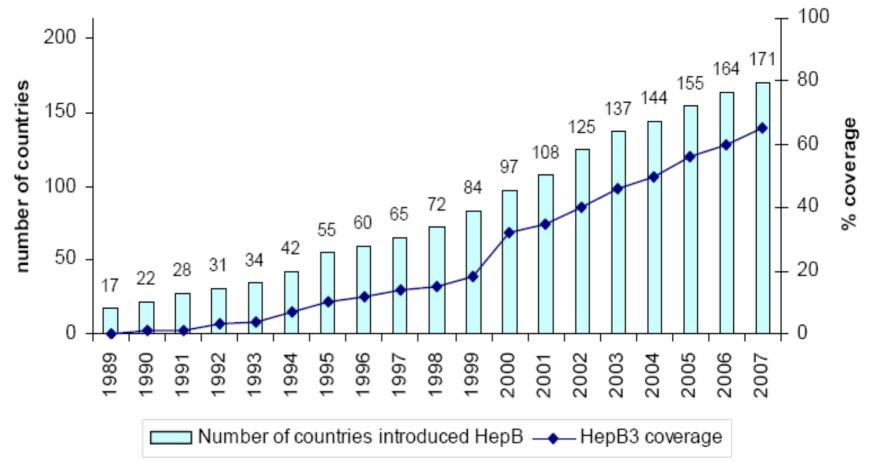

years old during July1983 - June 2004

Risk Predictor	HCC Patients No. (%)	Vaccinated population	Odds Ratio (95% C.I.)	<i>P</i> -Value
Prenatal mat	ernal HBsAg			
HBsAg (-)	8	3,656,182	1.00 (referent)	
HBsAg (+)	44	729,420 (29.50 13.98 to 62.60)	< .001

Chang MH, et al. J National Cancer Institute 2009; 101:1348–55.



Countries having introduced HepB vaccine and infant HepB3 coverage, 2007


Global Immunization 1989-2006, 3rd dose of Hepatitis B coverage in infants global coverage at 60% in 2006

Source: WHO/UNICEF coverage estimates 1980-2006, August 2007 Date of slide: 17 August 2007

Number of countries introduced HepB vaccine* and global infant HepB3 coverage, 1989-2007

^{*} Includes India and Sudan where Introduction is part of the country excluding 3 countries where HepB administered for adolescence

CAUSES OF BREAKTHROUGH HBV INFECTION

Maternal Factors:

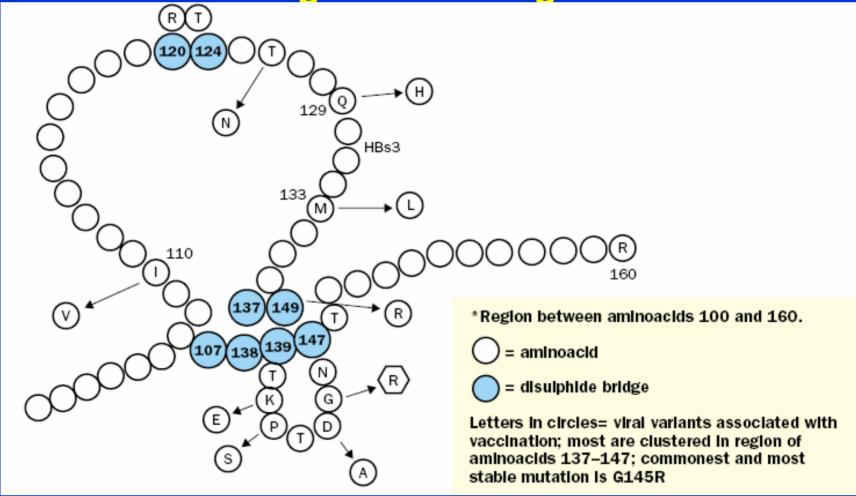
High Maternal Viral Load Intrauterine Infection

- Viral Factors : Surface Gene Mutants
- Host Factors :
 Genetic Hypo-responsiveness
 Immune Compromised Host

INTRAUTERINE INFECTION OF HBV

- HBsAg Seropositive Rate at Birth: 2.4% (16/665) Among Neonates of HBeAg Positive, HBsAg Positive Mothers
- Chronicity: 100%

Tang JR et al. J Pediatr 1998 ; 133: 374



CAUSES OF BREAKTHROUGH HBV INFECTION

- Maternal Factors :
 High Maternal Viral Load
 Intrauterine Infection
- Viral Factors : HBV Surface Gene Mutants
- Host Factors :
 Genetic Hypo-responsiveness
 Immune Compromised Host

Molecular structure of major hydrophilic region of HBsAg*

Prevalence of HBV Surface Gene a determinant Variants in Children <15 yrs with Positive HBsAg /or Anti-HBc Before and After HBV Vaccination in Taiwan

	1984	1989	1994	1999
No. Surveyed	1200	1134	1515	1357
No. Analyzed for				
HBV-DNA	148	91	65	71
No. Seropositive for				
HBV-DNA	103	51	32	13
No.with a Determin.	8	10	9	3
Mutant (%) in HBV	(7.8%)	(19.6%)	(28.1%)	(23.1%)
Carriers				
% in Total Surveyed	0.67%	0.88%	0.58%	0.22%

Long-Term Protection after Hepatitis B Vaccination in 1200 Children in Taiwan

- No New HBsAg Carrier (0.7%) during Follow-up from 7 to 16 Years old
- Annual New Anti-HBc Seroconversion Rate*: 0.13%
- Annual decay of Anti-HBs from age 7 to 16 was Approximately 20% of the Titer of the Previous Year.

* At least twice anti-HBc positive one year apart

Lin YC, et al. J Infect Dis 2003; 187: 134-8; Wang JW, et al. Clin Diag Lab Immunol 2005; 12: 1442–1447.

