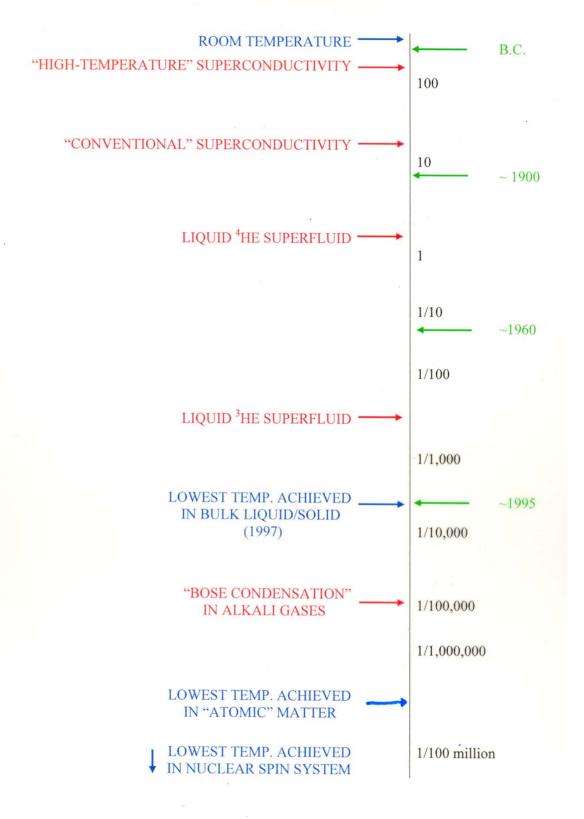
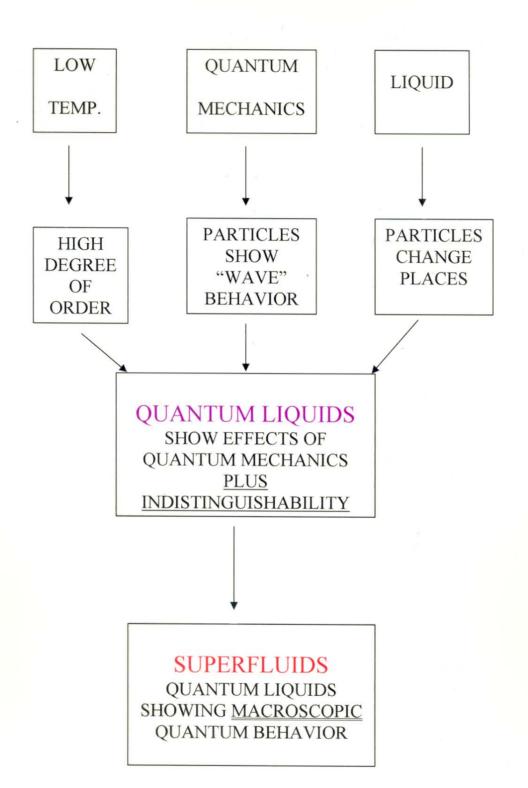


SUPERCONDUCTIVITY (1997)

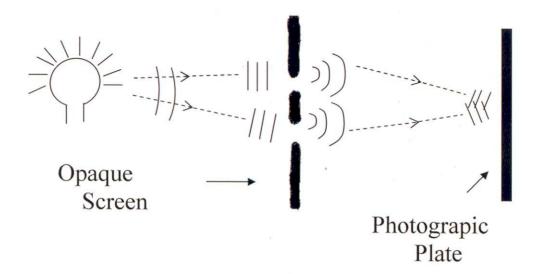




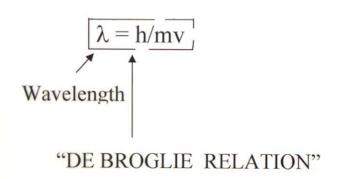
TEMPERATURE, ORDER and DISORDER



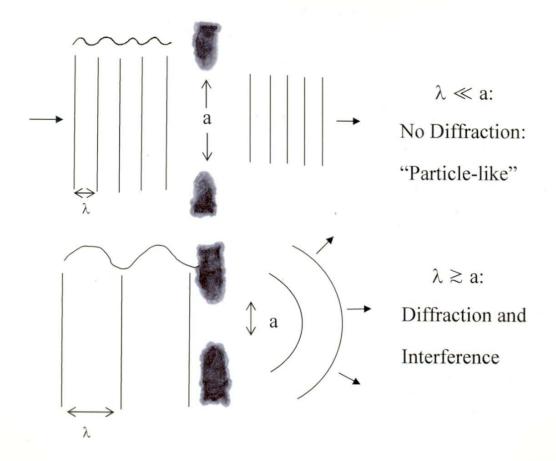
PARTICLES AS WAVES



For Particles:



When does a "wave" behave like a "particle"?



since $\lambda = h/mv$ (De Broglie) need

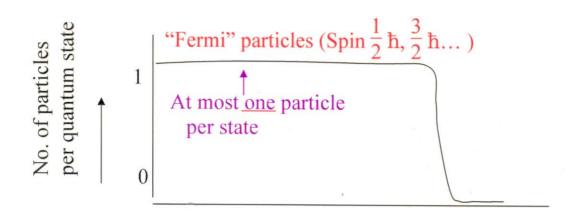


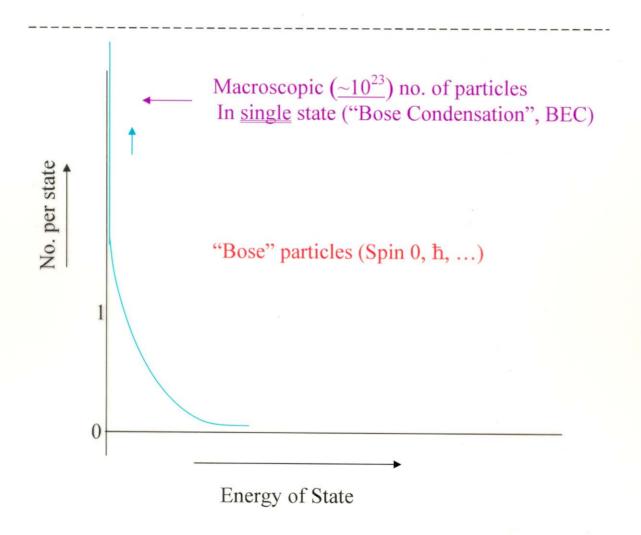
Why "Quantum Liquids"?

Gas: (usually) $\lambda \ll a$ so no "wave" (quantum) effects Solid at low T: $\lambda \gtrsim a$ but atoms don't change places Liquid at low T: $\lambda \gtrsim a$ and atoms change places

 $T \lesssim 20^{\circ} \text{ K/(Atomic No.)}$

"QUANTUM STATISTICS"





AMERICAN ASSOCIATION FOR THE ADVANCEMENT FOR SCIENCE

SCIENCE

22 DECEMBER 1995 Vol. 270 • Pages 1893-2064 \$7.00

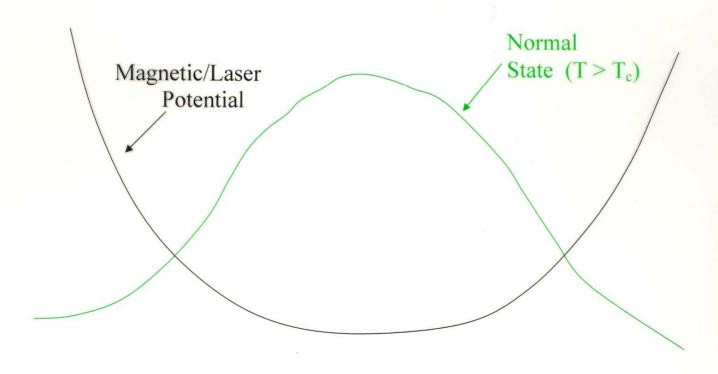
Molecule of the Year

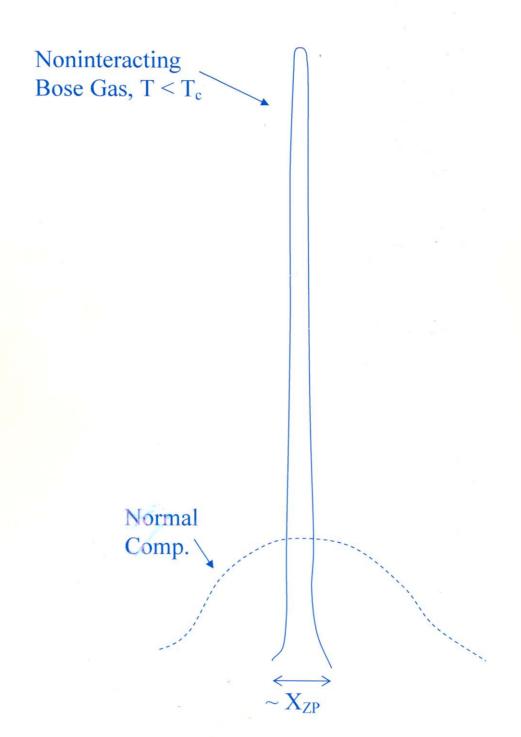
the Bose-Einsteir Condensate

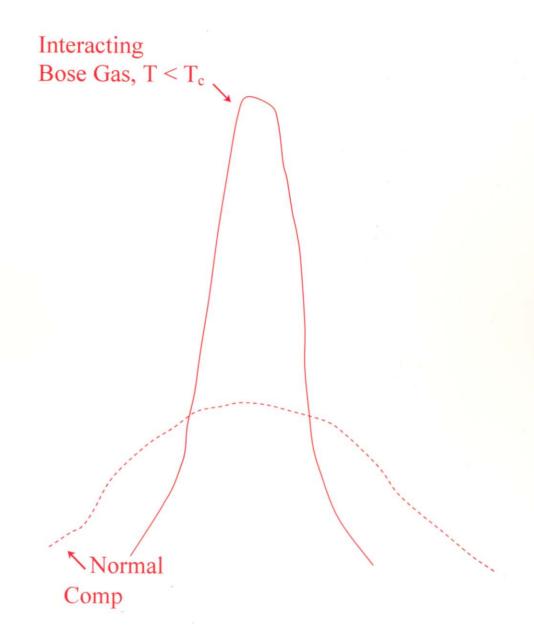
1.10

HOW TO SEE BEC OCCURRING?

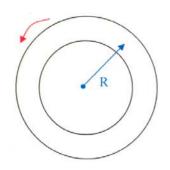
LITERALLY







"NO-ROTATION" EFFECT IN LIQUID ⁴HE



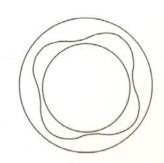
Walls rotating with ang. velocity $\omega \lesssim \omega_c \Leftarrow \equiv \hbar/m R^2$ What does liquid do?

General principle: Average ang. velocity of atoms $(\bar{\omega})$ as close as possible to ω

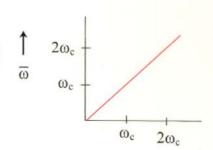
† : Single-atom states must obey quantization condition: $\omega = n\omega_c$ ($l = n \hbar$)

$$n\lambda = 2\pi R$$
 $+ d.B. \lambda = h/p$
 $\Rightarrow L = pR = n \hbar$
 $ang. mom^{m}$.

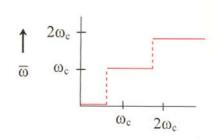
$$\Rightarrow L/mR^2 \equiv \omega = n\omega_c$$

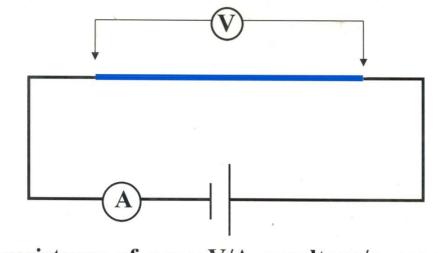


A. "Normal" (non-BEC) system: many different single-particle states occupied (typical value of $\mathbf{n} \sim (\mathbf{kT}/\hbar\omega_c)^{1/2} \sim 10^7$) \Rightarrow to get $\overline{\omega} = \omega$, just shift atoms slightly between states.

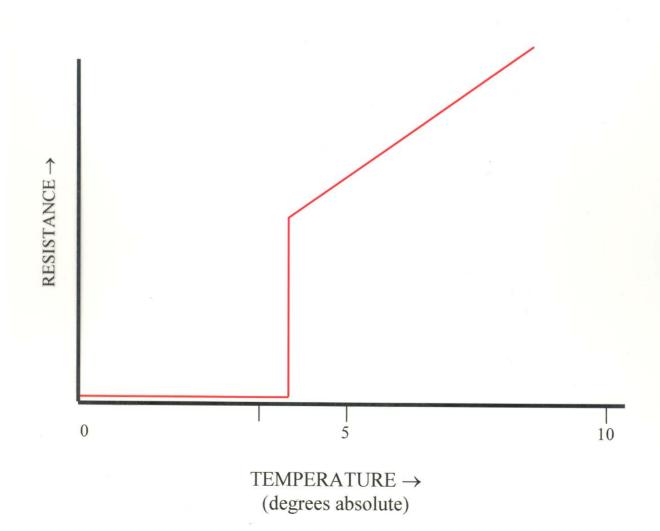


B. BEC system $(T \lessdot T_c)$:
(almost) all atoms in
condensate must have same
value of n. $(n_o) \Rightarrow \overline{\omega} \cong n_o \omega_c$

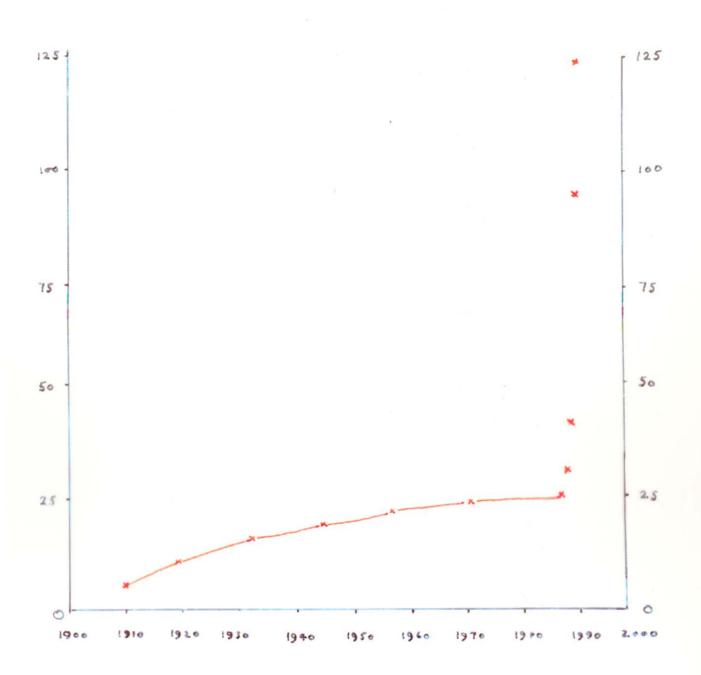




resistance of --=V/A = voltage/current



HISTORY OF THE HIGHEST TEMPERATURE ("T_c") AT WHICH SUPERCONDUCTIVITY KNOWN

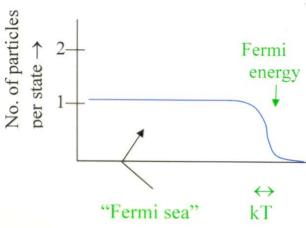


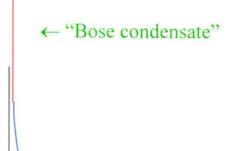
PHYSICS OF SUPERCONDUCTIVITY

"Spin" of elementary =
$$\frac{n}{2}$$
 ħ particles

0, 1, 2.... bosons
$$\frac{1}{2}$$
, $\frac{3}{2}$, $\frac{5}{2}$ fermions

At low temperatures:





Electrons in metals: spin $\frac{1}{2}$ \Rightarrow fermions

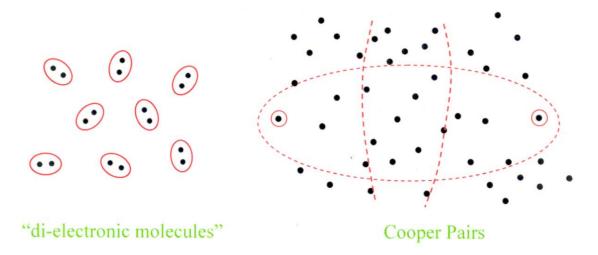
But a compound object consisting of an even no.

of fermions has spin $0, 1, 2 \dots \Rightarrow$ boson.

(Ex:
$$2p + 2n + 2c = {}^{4}\text{He atom}$$
)

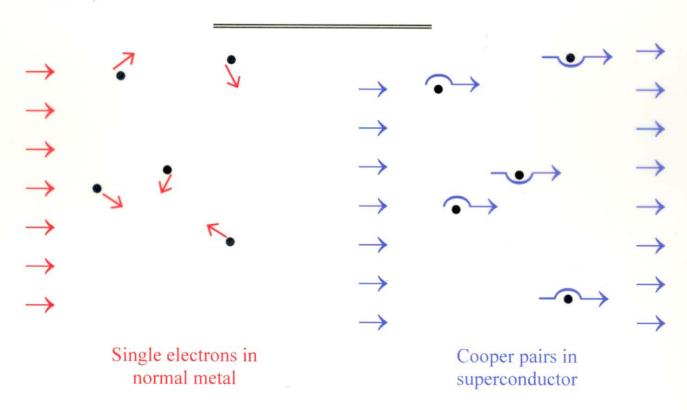
⇒ can undergo Bose condensation

Pairing of electrons:

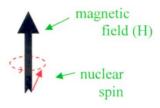


In simplest ("BCS") theory, Cooper pairs, once formed, must automatically undergo Bose condensation!

⇒ must all do exactly the same thing at the same time (also in nonequilibrium situation)

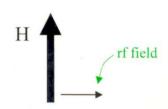


NUCLEAR MAGNETIC RESONANCE



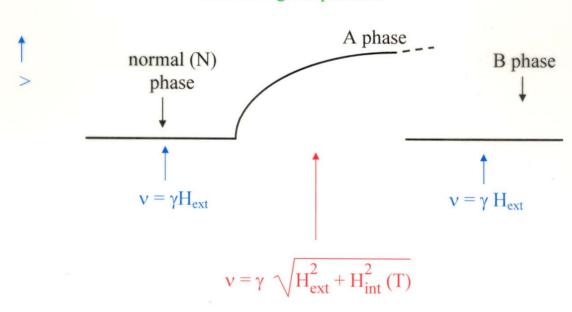
Rate of "precession" $v = \gamma H$ "gyromagnetic ratio"

 γ is known, (in 3 He, \sim 3 kHz/gauss) so, rate of precession (ν) measures magn. field (μ) To measure ν , apply oscillating (r.f.) field μ H: field is strongly absorbed when its frequency is ν .



NMR IN LIQUID ³He BELOW 3mK:

decreasing temperature

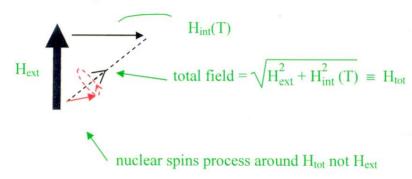


THE ³HE NMR PUZZLE (cont.)

In A phase, precession freq. ν is larger than value (γH_{ext}) in N phase, and given be expression of form

$$v = \gamma \sqrt{H_{\text{ext}}^2 + H_{\text{int}}^2(T)}$$

Simplest interpretation:



Problem:

Only possible origin of H_{int} (T) is other nuclear spins

Max. value of field of one nuclear spin on another (at distance of closest approach of atoms) < 1 gauss.

But, experimental value of $H_{int}(T)$ is ~ 30 gauss!

FIRST EVIDENCE FOR BREAKDOWN OF QUANTUM MECHANICS?

RESULT OF MORE SOPHISTICATED APPROACH:

- A. Simple classical argument too naive. (no "transverse" internal field)
- B. Nevertheless, indeed predict formula

$$v = \gamma \sqrt{H_{\text{ext}}^2 + H_0^2(T)}$$

where $H_0^2(T)$ is proportional to average value of nuclear dipole interaction energy $E_{dip}(T)$.

- energy difference (Δ E) between "good" and "bad" orientations < 10^{-7} K per pair.
- thermal energy (E_{th}) (= k_BT) ~ 10^{-3} K.

 \Rightarrow preference for "good" orientation over "bad" only $\sim \Delta E/E_{th} < 10^{-4}$

 \Rightarrow resulting value of $E_{dip}(T)$ much to small to fit experiment. Need preference for "good" and "bad" ~ 1 not $\sim \Delta E/E_{th}!$

SPONTANEOUSLY BROKEN SPIN-ORBIT SYMMETRY:

the analogy with ferromagnetism

FERROMAGNET

difference in energy per spin = ΔE (small) Above Curie temp.

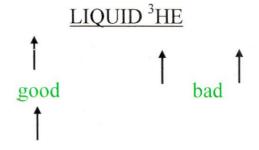
("paramagnetic" phase), spins behave independently \Rightarrow thermal energy E_{th} competes with $\Delta E \Rightarrow$ polarization only $\sim \Delta E/E_{eth} \ll 1$

Below T_c ("ferromagnetic" phase): strong (exchange) forces constrain all spins to lie parallel:

$$\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow \dots$$
 or $\downarrow \downarrow \downarrow \downarrow \downarrow \dots$ "good" "bad"

$$E_{good} - E_{bad} \sim N\Delta E \gg E_{th}$$

 $\Rightarrow polarization \sim 1$



difference in energy per

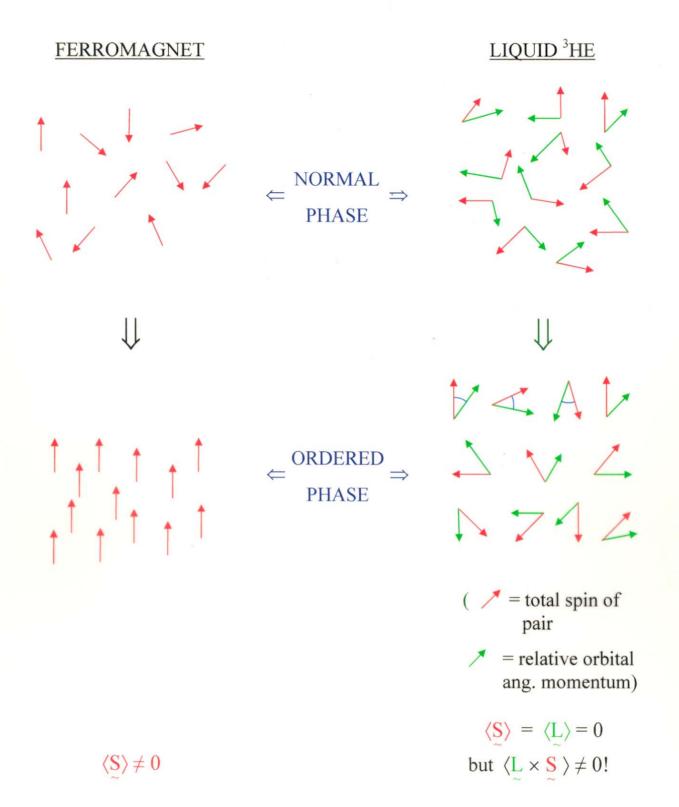
 $pair \equiv \Delta E < 10^{-7} \text{ K}$ In normal phase, pairs behave independently $\Rightarrow E_{th}$ competes with $\Delta E \Rightarrow$ "polarization" (pref. for good orientation over bad) only $\sim \Delta E/E_{th} \ll 1.$

In A phase, assume: strong
(kinetic-energy, VDW) forces
constrain all pairs to behave in
same way ⇒ either all "good" or
all "bad"

$$\begin{split} E_{good} - E_{bad} &\sim \underset{\sim}{\textbf{N}} \Delta E \\ & \Rightarrow E_{th} \end{split}$$

 \Rightarrow polarization can be ~ 1

SBSOS: ORDERING MAY BE SUBTLE



Amplification of ultra-weak effects by BEC (cf NMR):

Example: P- (but not T-) violating effects of neutral current part of weak interaction:

For single elementary particle, any EDM d must be of form

 $\underline{d} = \text{const. } \underline{J} \leftarrow \text{violates T as well as P.}$

But for ${}^{3}\text{He} - \text{B}$, can form

$$d \sim const. \ \underline{L} \times \underline{S} \sim const. \ \hat{\underline{\omega}}$$

violates P but not T.

Effect is tiny for single pair, but since all pairs have same value of $\mathbb{L} \times \mathbb{S}$, is multiplied by factor of $\sim 10^{23} \Rightarrow$

macroscopic P-violating effect?