

VEGI: Virtual Environment GUI Immersion System

Mohammed Elfarargy 1, Magdy Nagi 1,2, Noha Adly 1,2

1 Bibliotheca Alexandrina, El Shatby 21526, Alexandria, Egypt

2 Computer and Systems Engineering Department, Alexandria University, Alexandria, Egypt

ABSTRACT

Virtual Reality (VR) immersive environments are becoming more
popular and of less cost, hence, VR labs are becoming a main part
in any research that depends on visualization. This introduced the
need to port many 3D desktop visualization applications to VR.
Porting application GUIs can be a problem since original GUIs
are 2D by nature and using them directly can obscure a large area
of 3D viewport and spoil the immersive experience. On the other
hand, rewriting a 3D GUI can be a time consuming and tedious
task. In this work, we introduce a technique to embed 2D GUIs
into 3D Virtual Environments (VE). Our approach uses existing
2D GUIs that can be immersed into the VE allowing rapid GUI
development for VR applications. It can also be used for porting
3D desktop applications without rewriting the GUI code. Further,
it enables embedding many window-based desktop applications
into the VE, creating rich VEs where users can work with multiple
applications simultaneously.

KEYWORDS: Virtual Reality, Graphical User Interfaces.

INDEX TERMS: I.3.7 [Three-Dimensional Graphics and Realism]:
Virtual reality; H.5.2 [User Interfaces]: Graphical user interfaces
(GUI) - Interaction styles; H.5.1 [Multimedia Information
Systems]: Artificial, augmented, and virtual realities.

1 INTRODUCTION

There are many ways to build a GUI for a 3D VR application.
One option is to build a 3D GUI from scratch specifically for a
certain application. Many innovative ideas either in the GUI itself
or in input devices used were implemented to create 3D GUIs[7].
One downside of this approach is the lack of stable and standard
frameworks to build such GUIs, which makes developing them a
challenging and time consuming task for developers for each new
application. Also, considering this method when porting existing
3D desktop applications to VR environments means that the
whole GUI code must be rewritten from scratch which is time-
consuming and effort demanding.

Another approach for making GUIs for 3D applications is to
embed a 2D GUI inside the 3D application. This usually requires
3 steps:

1. Take a snapshot of the 2D GUI window displayed on the
desktop and use it to texture map some 3D object.

2. Send user events from the 3D application to the original GUI.
3. Take another snapshot of the window to reflect changes

caused by user interaction.
This technique can be implemented in many ways by utilizing
operating system’s window APIs (XLIB for Linux, Windows API
for MS Windows, etc) or third party Widget Toolkits (WT) that

provide the capability of sending user interaction events (clicks,
key presses, mouse movements, etc) manually and capturing GUI
snapshots. Andujar et al [2] and Larimer [3], used the Qt WT for
handling this process in order to make 2D GUIs and then have
them immersed inside VR applications. This approach can be
ineffective when porting existing applications to VR
environments since the original GUI must be created using the
same WT; otherwise, the GUI code must be rewritten.
 Other approaches [1,4] used XLIB window programming
library to insert 2D windows into 3D applications. These works
targeted 3D desktop applications rather than VR applications.
While the concept is interesting, desktop users can find it difficult
to interact with embedded GUIs. Also, it would be easier to
interact with the original 2D GUI instead of embedding it in a 3D
environment and then interacting with it. Using the same concept
with VR applications can be more useful since users usually use
only one 3D application that covers the whole display. Putting any
2D windows on an immersive environment would obscure the
display area and interfere with immersive experience.
 This work describes Virtual Environment GUI Immersion
(VEGI) system, which uses the same concepts as in [1] and [4] for
time-efficient porting of desktop 3D application to immersive
environment. Without any additional coding, VEGI embeds 2D
GUIs of interest and lays them on 3D planes and allows
interaction with them. Also, VEGI makes it possible for VR
application users to use multiple desktop window-based
applications simultaneously such as web browsers or calculators
while using the main VR application which results in a richer
work environment.

2 SYSTEM ARCHITECTURE

Figure 1. Basic system structure and functionality.

Figure 1 summarizes VEGI architecture. OpenSceneGraph [6] is
the main graphics engine used to draw 3D planes, texture them
with 2D GUI windows and manipulate them. DIVERSE [5] VR
library handles the display of 3D graphics inside the VE. The 2D
GUI windows of the application to be ported, or any other
window desired inside the VE, are drawn to a nested X server
such as Xvfb, Xephyr or Xgl.
 VEGI is loaded at run time as a DIVERSE Dynamic Shared
Object (DSO) that tracks windows immersed into the VE
including those of the main application GUI. A simple
configuration file is needed to specify which windows to track and
their initial placement in the virtual world.

e-mail: mohammed.elfarargy@bibalex.org

e-mail: magdy.nagi@bibalex.org

e-mail: noha.adly@bibalex.org

mailto:mohammed.elfarargy@bibalex.org
mailto:magdy.nagi@bibalex.org
mailto:noha.adly@bibalex.org

3 IMPLEMENTATION

VEGI uses various XLIB routines to capture screenshots of the

2D windows of interest and track new windows created at

runtime. Sending user interactions with windows is done using the

XTEST extension by using 6 degrees of freedom wand ray-

casting to send mouse cursor movements and button clicks.

A major difficulty is keeping track of new windows creation at

runtime. The way WTs handle window creation and destruction

differs from a WT to another. Taking pop-up windows as an

example, it is noticed that GTK+ library does not create a pop-up

window until needed. After usage, the pop-up window is not

destroyed and is kept unmapped until required again. FLTK, on

the other hand, creates pop-ups when needed and destroys them

soon after usage and creates them again when needed and so on.

Knowledge of such library-specific behaviours is required to

handle status changes correctly and hence it is essential to know

the WT behind newly created windows. Our prototype currently

supports GTK+, FLTK and Qt WTs.

X-server implementation varies among Linux distributions.

Needed GUIs are drawn to a nested X-server instead of the host

X-Server to guarantee the availability of a fixed set of features

and improve portability. Also, nested X-servers will host only the

GUIs we want embedded in the VE. This results in a minimal

window hierarchy that is easy to traverse. This improves

performance compared to host X-servers where hundreds of

windows and child controls exist resulting in huge hierarchies.

4 SAMPLE APPLICATIONS AND PERFORMANCE EVALUATION

Various applications were used to test and evaluate VEGI. GTK+

WT support was tested by embedding a number of popular

GNOME applications in the VE. VEGI was also used with a

natively developed VR application for statistical data visualization

that uses Qt library for GUI. Finally, VEGI helped in making a

VR version of VMD software, which uses FLTK library for GUI

(Figure 2). The VR version of VMD is an example of how VEGI

can be used to easily port a visualization application to immersive

environments. VEGI was tested on a cluster of five PCs equipped

with Dual-Core 64 bit 3.60 GHz Intel® Xeon® Processors with

4GB of RAM and 128 MB Nvidia® GeForce® FX 4500 cards.

Figure 2. VMD on CAVE system.

Two performance tests were conducted using CAVE system

working in stereo rendering mode. Both tests immersed 3D GUIs

into a 3D scene of 1,500,000 triangles. The scene rendered at

steady 55 frames per second (FPS) without VEGI loaded.

The first test evaluates the impact of the size of the immersed

2D GUI on performance. Larger GUIs mean larger pixel data in

the frame buffer. In order to update planes' textures, this portion

of the frame buffer must be copied and used to texture-map the

plane. The larger data to be copied, the more overhead there is.

Square GUI windows ranging from 64x64 pixels to 1024x1024

pixels were used. Results show that VR applications can work

with an acceptable frame rate of 30+ fps with VEGI for most

common window sizes. Table 1 summarizes these results.

Table 1: Effect of increasing 2D GUI window size on performance.

Window size

(pixels) 64x64 128x128 256x256 512x512 1024x1024

Average FPS 52 51 45 36 22

The second test evaluated the impact of the number of

immersed 2D GUIs. Table 2 shows that performance dropped by

an average of 1.5 fps for each additional window which is

acceptable. The VMD application was used with up to 10 GUI

planes without any noticeable delay. These results show that

VEGI can be integrated with VR applications without affecting

the interactivity and performance of the VR application.

Table 2: Overhead of increasing the number of immersed windows.

No. of windows 1 2 3 4 5

Average FPS 53 51 49 48 47

5 CONCLUSION

We introduced an approach for developing GUIs for VR

applications that provides a quick and easy way to port 3D

desktop applications into VR domain by embedding their 2D

GUIs into the VE. VEGI can also be used to embed any number

of window-based applications into the main VR application.

This work can be improved in many ways in the future. One

limitation in this work is that it currently supports DIVERSE VR

library only. Other VR libraries like FreeVR and VR Juggler

should be supported. Also, support for additional WTs should be

added to allow more applications to be ported to VR.

ACKNOWLEDGEMENTS

The authors wish to thank Ahmed Nawar for his valuable

efforts in testing, evaluating and improving VEGI.

REFERENCES

[1] Alexander Topol, 2000. Immersion of Xwindow applications into a

3D workbench. Conference on Human Factors in Computing

Systems (CHI’00) Student Poster, The Hague, The Netherlands, pp.

355–356.

[2] Andujar C. et al, 2006. A cost-effective approach for developing

application-control GUIs for virtual environments. Proceedings of

the IEEE virtual reality conference (VR 2006), Washington, DC,

USA, pp. 45–52.

[3] Daniel Larimer and Doug Bowman, 2003. VEWL: A framework for

building a windowing interface in a virtual environment.

Proceedings of INTERACT: IFIP International Conference on

Human-Computer Interaction, Washington, DC, USA, pp. 809–812.

[4] Dykstra, P. 1994. X11 in virtual environments: combining computer

 interaction methodologies. X Resource (Jan. 1994), 195-204.

[5] John Kelso et al, 2002. Diverse: A framework for building extensible

and reconfigurable device independent virtual environments.

Proceedings of the IEEE Virtual Reality Conference 2002,

Washington, DC, USA, pp. 183.

[6] OpenSceneGraph. http://openscenegraph.org.

[7] Raimund Dachselt and Anett Hubner, 2007. Virtual Environments

Three-dimensional menus: A survey and taxonomy. Computers &

Graphics 31 (2007) pp. 53–65

http://openscenegraph.org/

